41 resultados para Calculus of variations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

At Site 572, located at 1°N, 114° W (3903 m water depth), we recovered a continuous hydraulic piston cored section of upper Miocene to upper Pleistocene pelagic sediments. The sediment is composed of biogenic carbonate and silica with nonbiogenic material as a minor component. Detailed analysis of the calcium carbonate content shows that the degree of variability in carbonate deposition apparently changed markedly between the late Miocene and Pliocene at this equatorial Pacific site. During this interval carbonate mass accumulation rates decreased from 2.6 to 0.8 g/cm**2 per 10**3 yr. If we assume that variations in CaCO3 content reflect changes in the degree of dissolution, then the detailed carbonate analysis would suggest that the degree of variability in carbonate deposition decreases by a factor of 5 as the dominant wavelength of variations increases significantly. However, if the variability in carbonate concentration is described in terms of changes in mean mass accumulation, calculations then suggest that relatively small changes in noncarbonate rates may be important in controlling the observed carbonate records. In addition, the analysis suggests that the degree of variability observed in pelagic carbonate data may in part reflect total accumulation rates. Intervals with high sedimentation rates show lower amplitude variations in concentration than intervals with lower sedimentation rates for the same degree of change in the carbonate accumulation rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present field measurements of air-sea gas exchange by the radon deficit method that were carried out during JASIN 1978 (NE Atlantic) and FGGE 1979 (Equatorial Atlantic). Both experiments comprised repeated deficit measurements at fixed position over periods of days or longer, using a previously descibed precise and fast-acquiaition, automatic radon measuring system. The deficit time series exhibit variations that only partly reflect the expected changes in gas transfer. By evaluating averages over each time series we deduce the following gas transfer velocities (average wind velocity and water temperature in parentheses): JASIN phase 1: 1.6 ± 0.8 m/d (at ~6 m/s, 13°C) JASIN phase 2: 4.3 ± 1.2 m/d (at ~8 m/s, 13°C) FGGE: 1.2 ± 0.4 m/d (at ~5 m/s, 28°C) 0.9 ± 0.4 m/d (at ~7 m/s, 28°C) 1.5 ± 0.4 m/d (at ~7 m/s, 28°C) The large difference betwen the JASIN phase 2 and FGGE values despite quite similare average wind velocity becomes even larger when the values are, however, fully compatible with the range of gas transfer velocities observed in laboratory experiments and the conclusion is suggested that their difference is caused by the highly different wind variability in JASIN and FGGE. We conclude that in gas exchange parameterization it is not sufficinent to consider wind velocity only. A comparison of our observations with laboratory results outlines the range of variations of air-sea gas transfer velocities with wind velocity and sea state. We also reformulate the radon deficit method, in the light of our observed deficit variations, to account explicitely for non-stationary and horizontal inhomogeneity in previous radon work introduces considerable uncertainty in deduced gas transfere velocity. We furthermore discuss the observational rewuirements that have to be met for an adequate exploitation of the radon deficit method, of which an observation area of minimum horizontal inhomogeneity and monitoring of the remaining inhomogeneities are thought to be the most stringent ones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Physiological data and models of coral calcification indicate that corals utilize a combination of seawater bicarbonate and (mainly) respiratory CO2 for calcification, not seawater carbonate. However, a number of investigators are attributing observed negative effects of experimental seawater acidification by CO2 or hydrochloric acid additions to a reduction in seawater carbonate ion concentration and thus aragonite saturation state. Thus, there is a discrepancy between the physiological and geochemical views of coral biomineralization. Furthermore, not all calcifying organisms respond negatively to decreased pH or saturation state. Together, these discrepancies suggest that other physiological mechanisms, such as a direct effect of reduced pH on calcium or bicarbonate ion transport and/or variable ability to regulate internal pH, are responsible for the variability in reported experimental effects of acidification on calcification. To distinguish the effects of pH, carbonate concentration and bicarbonate concentration on coral calcification, incubations were performed with the coral Madracis auretenra (= Madracis mirabilis sensu Wells, 1973) in modified seawater chemistries. Carbonate parameters were manipulated to isolate the effects of each parameter more effectively than in previous studies, with a total of six different chemistries. Among treatment differences were highly significant. The corals responded strongly to variation in bicarbonate concentration, but not consistently to carbonate concentration, aragonite saturation state or pH. Corals calcified at normal or elevated rates under low pH (7.6-7.8) when the seawater bicarbonate concentrations were above 1800 µm. Conversely, corals incubated at normal pH had low calcification rates if the bicarbonate concentration was lowered. These results demonstrate that coral responses to ocean acidification are more diverse than currently thought, and question the reliability of using carbonate concentration or aragonite saturation state as the sole predictor of the effects of ocean acidification on coral calcification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The frequency of large-scale heavy precipitation events in the European Alps is expected to undergo substantial changes with current climate change. Hence, knowledge about the past natural variability of floods caused by heavy precipitation constitutes important input for climate projections. We present a comprehensive Holocene (10,000 years) reconstruction of the flood frequency in the Central European Alps combining 15 lacustrine sediment records. These records provide an extensive catalog of flood deposits, which were generated by flood-induced underflows delivering terrestrial material to the lake floors. The multi-archive approach allows suppressing local weather patterns, such as thunderstorms, from the obtained climate signal. We reconstructed mainly late spring to fall events since ice cover and precipitation in form of snow in winter at high-altitude study sites do inhibit the generation of flood layers. We found that flood frequency was higher during cool periods, coinciding with lows in solar activity. In addition, flood occurrence shows periodicities that are also observed in reconstructions of solar activity from 14C and 10Be records (2500-3000, 900-1200, as well as of about 710, 500, 350, 208 (Suess cycle), 150, 104 and 87 (Gleissberg cycle) years). As atmospheric mechanism, we propose an expansion/shrinking of the Hadley cell with increasing/decreasing air temperature, causing dry/wet conditions in Central Europe during phases of high/low solar activity. Furthermore, differences between the flood patterns from the Northern Alps and the Southern Alps indicate changes in North Atlantic circulation. Enhanced flood occurrence in the South compared to the North suggests a pronounced southward position of the Westerlies and/or blocking over the northern North Atlantic, hence resembling a negative NAO state (most distinct from 4.2 to 2.4 kyr BP and during the Little Ice Age). South-Alpine flood activity therefore provides a qualitative record of variations in a paleo-NAO pattern during the Holocene. Additionally, increased South Alpine flood activity contrasts to low precipitation in tropical Central America (Cariaco Basin) on the Holocene and centennial time scale. This observation is consistent with a Holocene southward migration of the Atlantic circulation system, and hence of the ITCZ, driven by decreasing summer insolation in the Northern hemisphere, as well as with shorter-term fluctuations probably driven by solar activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mg/Ca, Sr/Ca, and stable isotope measurements have been performed on tests from the planktonic foraminifers Globigerinoides ruber (white), Globigerina bulloides, and Neogloboquadrina pachyderma (right coiling) in samples from Ocean Drilling Program site 977A in the Alboran Sea (Western Mediterranean). The evolution of different water masses between 250 and 150 ka is described. Warm substages were characterized by strong seasonality and thermal stratification of the water column. By contrast, less pronounced seasonality and basin stratification seem to prevail during cold substages. Several periods of stratification due to the low salinity of the upper water mass occurred during the formation of organic-rich layers and also during a possible Heinrich-like event at 220 ka. The three foraminifer species studied show a common and large shell Sr/Ca variability in short timescales, suggesting changes in the global ocean Sr/Ca ratio as one of the main causes of variations in shell composition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ODP Site 798 on the Oki Ridge in the Southern Japan Sea yielded the first continuous and well-preserved record of Pleistocene planktonic foraminifers in the Northwestern Pacific Ocean region. Quantitative analysis of planktonic foraminifers completed for 122 samples from the 200-m-thick Pleistocene section cored at ODP Site 798 provides a proxy record of variations in sea-surface temperature, productivity, and circulation during the past 1.6 m.y. in an area beneath the track of the Tsushima Current. Faunal census data allow recognition of five distinct assemblages: (1) type A assemblages dominated by sinistrally coiling forms of Neogloboquadrina pachyderma representing polar-subpolar surface temperatures, (2) type B assemblages dominated by Globigerina bulloides and thought to represent periods of increased surface productivity and upwelling, (3) type C assemblages marked by significant abundances of dextrally coiling forms of N. pachyderma thought to represent the warm transitional waters of the Tsushima Current, (4) type D assemblages distinguished by relatively high percentages of dextral N. pachyderma and Globorotalia inflata that also represent warmer surface temperatures and increased flow of the Tsushima Current, and (5) type E assemblages marked by relatively large numbers of the delicate species Globigerina quinqueloba and Globigerinita spp., indicative of exceptional preservation conditions and/or episodic high production of these taxa. Early and middle Pleistocene coiling patterns of Neogloboquadrina pachyderma at Site 798 can be correlated with Pleistocene coiling trends and planktonic foraminiferal datums established in the onshore Oga Peninsula sequence of Northern Honshu and open-ocean N. pachyderma coiling dominance shifts in the North Pacific region. A sustained early Pleistocene warm period recognized in both the Oga Peninsula sequence and the Northern Pacific can clearly be recognized at Site 798. In addition, the late Pleistocene planktonic foraminiferal record at Site 798 shows good correlation with glaciation/deglaciation events for the Northern Hemisphere as delineated by oxygen isotopes and represents the first detailed analysis of Pleistocene sea-surface temperature changes in the Northwestern Pacific Ocean region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high-resolution (10-20 kyr) record of variations in CaCO3 content and dissolution was established for latest Cretaceous (last 0.7 Myr) deep-sea sediments from the South Atlantic Ocean (DSDP Site 516 from the Rio Grande Rise, and sites 525 and 527 from the Walvis Ridge). The degree of fragmentation of planktonic foraminifera (DFP) was used as a measure of calcite dissolution. High negative correlations between DFP and other independent measures of carbonate dissolution (percentage of sand fraction, absolute abundance of planktonic foraminifera, and planktonic/benthic foraminiferal ratio) validate its use as a sensitive index of calcite dissolution in upper Maastrichtian deep-sea sediments. Very high DFP and a significant negative correlation between DFP and CaCO 3 content suggest that Site 516 was located below the foraminiferal lysocline during the entire interval studied. Such a shallow position of the lysocline (paleodepth of Site 516 was 1.2 km) may be explained by "upwelling" of corrosive deep waters along the southern margin of the Rio Grande Rise. Sites 525 and 527 were located above the foraminiferal lysocline; however, three short periods of enhanced dissolution were recognised at Site 525 (paleodepth 1 km) and one interval of strong dissolution was identified at Site 527 (paleodepth 2.7 km). The lack of correspondence between the dissolution regimes at sites from the Walvis Ridge suggests limited deep-water communication across this physiographic barrier. Two of the dissolution maxima recognised at Site 525 correspond to carbonate maxima at Site 527. Variations in "upwelling" intensity along the Walvis Ridge, resulting in fluctuations in primary productivity in this area, may be the proximal cause of both carbonate cycles at Site 527 and dissolution cycles at Site 525. We suggest that development of the bottom Ekman layer between a hypothetical westward geostrophic current and the topographical height of the Rio Grande Rise-Walvis Ridge system may be a plausible hydrodynamical explanation for the proposed "'upwelling" along the southern margin of this topographical structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increases in the production rate of cosmogenic radionuclides associated with geomagnetic excursions have been used as global tie-points for correlation between records of past climate from marine and terrestrial archives. We have investigated the relative timing of variations in 10Be production rate and the corresponding palaeomagnetic signal during one of the largest Pleistocene excursions, the Iceland Basin (IB) event (ca. 190 kyr), as recorded in two marine sediment cores (ODP Sites 1063 and 983) with high sedimentation rates. Variations in 10Be production rate during the excursion were estimated by use of 230Thxs normalized 10Be deposition rates and authigenic 10Be/9Be. Resulting 10Be production rates are compared with high-resolution records of geomagnetic field behaviour acquired from the same discrete samples. We find no evidence for a significant lock-in depth of the palaeomagnetic signal in these high sedimentation-rate cores. Apparent lock-in depths in other cores may sometimes be the result of lower sample resolution. Our results also indicate that the period of increased 10Be production during the IB excursion lasted longer and, most likely, started earlier than the corresponding palaeomagnetic anomaly, in accordance with previous observations that polarity transitions occur after periods of reduced geomagnetic field intensity prior to the transition. The lack of evidence in this study for a significant palaeomagnetic lock-in depth suggests that there is no systematic offset between the 10Be signal and palaeomagnetic anomalies associated with excursions and reversals, with significance for the global correlation of climate records from different archives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Past glacials can be thought of as natural experiments in which variations in boundary conditions influenced the character of climate change. However, beyond the last glacial, an integrated view of orbital- and millennial-scale changes and their relation to the record of glaciation has been lacking. Here, we present a detailed record of variations in the land-ocean system from the Portuguese margin during the penultimate glacial and place it within the framework of ice-volume changes, with particular reference to European ice-sheet dynamics. The interaction of orbital- and millennial-scale variability divides the glacial into an early part with warmer and wetter overall conditions and prominent climate oscillations, a transitional mid-part, and a late part with more subdued changes as the system entered a maximum glacial state. The most extreme event occurred in the mid-part and was associated with melting of the extensive European ice sheet and maximum discharge from the Fleuve Manche river. This led to disruption of the meridional overturning circulation, but not a major activation of the bipolar seesaw. In addition to stadial duration, magnitude of freshwater forcing, and background climate, the evidence also points to the influence of the location of freshwater discharges on the extent of interhemispheric heat transport.