107 resultados para CHANGING OCEAN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micropaleontologists have traditionally recognized the mid-Miocene Fohsella lineage as a flagship for phyletic gradualism within the planktic foraminifera. However, study of a deep-sea record from the western equatorial Pacific (ODP Site 806) reveals that coiling ratios within this clade suddenly (<5 kyr) shift after a prolonged, ancestral state of near randomness (~50%) to a transient phase (13.42-13.43 Ma) of dextral dominance (~75%) immediately following the first common occurrence of keeled fohsellids. This brief period of dextral dominance was abruptly (<5 kyr) succeeded by an irreversible change to sinistral dominance (~96%). Fohsellid abundances decline markedly through the interval in which the sinistral preference is established. The shift to sinistrality (13.42 Ma) predated the deepening of fohsellid depth ecology by ~240-488 kyr, indicating that these two events were unrelated. This view is supported by a lack of delta 18O evidence for depth-habitat differences between the two chiral forms, which refutes the notion that sinistral fohsellids were "pre-adapted" for ensuing hydrographic change because they occupied a deeper depth habitat than their dextral counterparts. Planktic foraminiferal assemblages become strongly oligotrophic in character through the interval in which the fohsellid delta 18O increase is recorded, indicating that the migration to deeper depths was fostered by an expansion of the mixed layer in the western equatorial Pacific. Salient aspects of this brief, but conspicuous faunal change are a marked increase in the abundance of symbiont-bearing globigerinoidids, a concomitant collapse of local Jenkinsella mayeri/siakensis populations, and reduced fohsellid abundances. The rapid and permanent nature of the Fohsella sinistral shift provides a distinct, unequivocal datum that may prove useful for correlating mid-Miocene sections throughout the Caribbean Sea and tropical regions in the western sectors of the Pacific and Atlantic. The coiling ratio changes that occurred during the evolution of the Fohsella chronocline probably reflect changing population dynamics between cryptic genotypes with different coiling preferences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Widespread silicic pyroclastic eruptions of the Oligocene Afro-Arabian flood volcanic province (ignimbrites and airfall tuffs) produced up to 20% of the total flood volcanic stratigraphy (>6*10**4 km**3). Volumes of individual ignimbrites and tuffs exposed on land range from ~150 to >2000 km**3 and eight major units (15-100 m thick) were erupted in <2 Myr, placing these amongst the largest-magnitude silicic pyroclastic eruptions on Earth. They are compositionally distinctive time-stratigraphic markers which were deposited as co-ignimbrite ashfall deposits on a near-global scale around the time of the Oi2 cooling anomaly at ~30 Ma. Two ignimbrites from the lower part of the flood volcanic succession in Yemen have been correlated to: (a) the conjugate rifted margin of Ethiopia (>500 km distant); and (b) to two deep sea ash layers sampled by ODP Leg 115 in the Indian Ocean ~2700 km to the southeast. This correlation is based on whole rock analyses of silicic units for isotope ratios (Pb, Nd) and rare earth element compositions, in conjunction with novel in situ Pb isotope laser ablation multicollector inductively coupled plasma mass spectroscopy analysis of groundmass and glass shards. Compositional diversity preserved on the scale of individual ash shards in these deep sea tephra layers record chemical heterogeneity present in the silicic magma chambers that is not evident in the welded on-land deposits. Ages of the ash layers can be established by correlation to precisely dated on-land ignimbrites, and current evidence suggests that while these eruptions may have exacerbated already changing climatic conditions, they both marginally post-date the Oi2 global cooling anomaly.