40 resultados para Biometric components


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coccolithophores, a diverse group of phytoplankton, make important contributions to pelagic calcite production and export, yet the comparative biogeochemical role of species other than the ubiquitous Emiliania huxleyi is poorly understood. Here we examined the relative importance of E. huxleyi and two Coccolithus species (Coccolithus pelagicus and Coccolithus braarudii), in terms of daily calcite production, by culturing E. huxleyi and Coccolithus in parallel, and comparing growth rates and biometrically determined cellular carbon calcite quotas. Biometric measurements of Coccolithus species, and E. huxleyi cell diameters, were performed using polarised light microscopy. Scanning electron microscopy was used for all other biometric measurements of E. huxleyi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined changes in equatorial Pacific phosphorus (µmol P/g) and barite (BaSO4; wt%) concentrations at high resolution (2 cm) across the Paleocene/Eocene (P/E) boundary in sediments from Ocean Drilling Program (ODP) Leg 199 Site 1221 (153.40 to 154.80 meters below seafloor [mbsf]). Oxide-associated, authigenic, and organic P sequentially extracted from bulk sediment were used to distinguish reactive P from detrital P. We separated barite from bulk sediment and compared its morphology with that of modern unaltered biogenic barite to check for diagenesis. On a CaCO3-free basis, reactive P concentrations are relatively constant and high (323 µmol P/g or ~1 wt%). Barite concentrations range from 0.05 to 5.6 wt%, calculated on a CaCO3-free basis, and show significant variability over this time interval. Shipboard measurements of P and Ba in bulk sediments are systematically lower (by ~25%) than shore-based concentrations and likely indicate problems with shipboard standard calibrations. The presence of Mn oxides and the size, crystal morphology, and sulfur isotopes of barite imply deposition in sulfate-rich pore fluids. Relatively constant reactive P, organic C, and biogenic silica concentrations calculated on a CaCO3-free basis indicate generally little variation in organic C, reactive P, and biogenic opal burial across the P/E boundary, whereas variable barite concentrations indicate significant changes in export productivity. Low barite Ba/reactive P ratios before and immediately after the Benthic Extinction Event (BEE) may indicate efficient nutrient burial, and, if nutrient burial and organic C burial are linked, high relative organic C burial that could temporarily drawdown CO2 at this site. This interpretation requires postdepositional oxidation of organic C because organic C to reactive P ratios are low throughout the section. After the BEE, higher barite Ba/reactive P ratios combined with higher barite Ba concentrations may imply that higher export productivity was coupled with unchanged reactive P burial, indicating efficient nutrient and possibly also organic C recycling in the water column. If the nutrient recycling is decoupled from organic C, the high export production could be indicative of drawdown of CO2. However, the observation that organic C burial is not high where barite burial is high may imply that either C sequestration was restricted to the deep ocean and thus occurred only on timescales of the deep ocean mixing or that postdepositional oxidation (burn down) of organic matter affected the sediments. The decoupling of barite and opal may result from low opal preservation or production that is not diatom based.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reconstruct paleoproductivity at three sites in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088) to investigate the presence and extent of the late Miocene to early Pliocene 'biogenic bloom' from 9 to 3 Ma. Our approach involves construction of multiple records including benthic foraminiferal and CaCO3 accumulation rates, Uvigerina counts, dissolution proxies, and geochemical tracers for biogenic and detrital fluxes. This time interval also contains the so-called late Miocene carbon isotope shift, a well-known decrease in benthic foraminiferal d13C values. We find that the timing of paleoproductivity maxima differs among the three sites. At Site 982 (North Atlantic), benthic foraminifera and CaCO3 accumulation were both at a maximum at ~5 Ma, with smaller peaks at ~6 Ma. The paleoproductivity maximum was centered earlier (~6.6-6.0 Ma) in the tropical Atlantic (Site 925). In the South Atlantic (Site 1088), paleoproductivity increased even earlier, between 8.2 Ma and 6.2 Ma, and remained relatively high until ~5.4 Ma. We note that there is some overlap between the interval of maximum productivity between Sites 925 and 1088, as well as the minor productivity increase at Site 982. We conclude that the paleoproductivity results support hypotheses aiming to place the biogenic bloom into a global context of enhanced productivity. In addition, we find that at all three sites the d13C shift is accompanied by carbonate dissolution. This observation is consistent with published studies that have sought a relationship between the late Miocene carbon isotope shift and carbonate preservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five Ocean Drilling Program sites (657-661), which form a north-south transect off the western periphery of the Sahara, were selected to measure the long-term history of Saharan/Sahelian dust flux and fluvial sediment discharge and the fluxes of marine CaCO3 and opal over the last 8 m.y. Sites 658 and 659 served for high-resolution studies, and Sites 657, 660, and 661 for insights into the spatial patterns of dust flux. The nearshore mean flux of opal off Cap Blanc (21 °N) showed an abrupt increase about 3 Ma that appears to reflect the main onset of coastal upwelling fertility and enhanced trade winds. At the same time, the input of river-borne clay strongly decreased, suggesting a dry up of the central Saharan rivers. Later, marked short-lived spikes of clay and opal may indicate ongoing ephemeral pulses of fluvial runoff linked to peak interglacial stages. Given the zonal dust discharge centered near 18 °N at Site 659, the aridification of the south Sahara and Sahel increased in several steps: at 4.6, 4.3, and especially at 4.0, 3.6, and 2.1 Ma, and again, at 0.8 Ma. The late Miocene and earliest Pliocene were humid. Although the central and north Saharan climate appears to be linked to the glaciation history of the Northern Hemisphere, the long-term aridification further south followed a different schedule. The spatial distribution of quartz accumulation suggests that the dust outbreaks linked to the Intertropical Convergence Zone during summer did not shift in latitude back to 4.0 Ma, at least. The short-term variations of dust output over the last 0.5 m.y. followed orbital scale pulses with a strong precessional signal, showing a link of Sahelian humidity changes to the variation of sea-surface temperature and evaporation in the tropical Atlantic.