107 resultados para Big Creek Lake Site
Resumo:
To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5-37 mg/kg, Cu 20-190 mg/kg, Zn 50-300 mg/kg, Pb 4.5- 34 mg/kg). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.
Resumo:
This report presents short-wave infrared spectroscopic data acquired from both core and powdered samples collected during Ocean Drilling Program Leg 193, from Holes 1188A, 1188F, and 1189A, using a Portable Infrared Mineral Analyzer reflectance spectrometer. The distribution of alteration minerals detected using this method for each site is presented.
Resumo:
The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.
Resumo:
Lake ice change is one of the sensitive indicators of regional and global climate change. Different sources of data are used in monitoring lake ice phenology nowadays. Visible and Near Infrared bands of imagery (VNIR) are well suited for the observation of freshwater ice change, for example data from AVHRR and MODIS. Active and passive microwave data are also used for the observation of lake ice, e.g., from satellite altimetry and radiometry, backscattering coefficient from QuickSCAT, brightness temperature (Tb) from SSM/I, SMMR, and AMSR-E. Most of the studies are about lake ice cover phenology, while few studies focus on lake ice thickness. For example, Hall et al. using 5 GHz (6 cm) radiometer data showed a good relationship between Tb and ice thickness. Kang et al. found the seasonal evolution of Tb at 10.65 GHz and 18.7 GHz from AMSR-E to be strongly influenced by ice thickness. Many studies on lake ice phenology have been carried out since the 1970s in cold regions, especially in Canada, the USA, Europe, the Arctic, and Antarctica. However, on the Tibetan Plateau, very little research has focused on lake ice-cover change; only a small number of published papers on Qinghai Lake ice observations. The main goal of this study is to investigate the change in lake ice phenology at Nam Co on the Tibetan Plateau using MODIS and AMSR-E data (monitoring the date of freeze onset, the formation of stable ice cover, first appearance of water, and the complete disappearance of ice) during the period 2000-2009.
Resumo:
The Snake Pit active hydrothermal field was discovered at 23°22'N on the Mid-Atlantic Ridge during ODP Leg 106. Among the ten holes drilled in the mound at the foot of an active chimney, only three (649B, 649F, and 649G) had substantial recovery, and produced cores of unconsolidated hydrothermal deposit made up of porous sulfide fragments with minor talc pellets and biological debris, and a few pieces of brassy massive sulfides. Eight representative samples from the 6.5-m-long core from Hole 649B were analyzed for bulk chemistry, both by XRF (major elements) and NAA (trace elements). Major elements average compositions show high Fe (36 wt%), S (37 wt%), and Cu (12 wt%) contents, and minor Zn (6.7 wt%), reflecting a mostly high-temperature deposit. Trace elements are characterized by a high Au content (600 ppb) which could express the maturity of the mound. Mineralogical assemblages show evidence of sequential precipitation, and absence of equilibrium. Major sulfide phases are pyrrhotite, pyrite, Fe, Cu sulfides, marcasite, and sphalerite. Three types of samples are distinguished on the basis of textures and mineral assemblages: type 1, rich in pyrrhotite, with approximately equivalent amounts of Cu, Fe sulfides, and sphalerite and minor pyrite; type 2, rich in Cu, Fe sulfides, which are cubic cubanite with exsolutions and rims of chalcopyrite; and type 3, essentially made up of sphalerite. Type 2 samples likely represent fragments of the inner chimney wall. The presence of talc intergrown with cubic cubanite/chalcopyrite in one big piece from Hole 649G is probably related to mixing of the hydrothermal fluid with seawater.
Resumo:
For the 2004-2006 growing seasons, we trapped a total of 6980 spiders (5066 adults, 1914 immatures) using pitfall traps at the Arctic Long Term Experimental Research (LTER) site in Toolik Lake, Alaska. We found 10 families and 51 putative species, with 45 completely identified, in two distinct habitats: Moist Acidic Tundra (MAT) and Dry Heath (DH) Tundra. We captured spiders belonging to the following families (number of species captured): Araneidae (1), Clubionidae (1), Dictynidae (1), Gnaphosidae (4), Linyphiidae (26), Lycosidae (11), Philodromidae (2), Salticidae (1), Theridiidae (1), and Thomisidae (3). Statistical comparisons of families captured at MAT and DH Tundra indicate that the habitats have significantly different spider communities (Chi Square Test: p < 0.0001, and Fisher's Exact Test: p = 0.0018). This finding is further supported by differences in similarity, diversity, evenness, and species richness between the two habitats. In this report, we present eight new state records and five extensions of previously described ranges for spider species. The following species are new state records for Alaska: Emblyna borealis (O.P.-Cambridge 1877), Horcotes strandi (Sytschevskaja 1935), Mecynargus monticola (Holm 1943), Mecynargus tungusicus (Eskov 1981), Metopobactrus prominulus (O.P. -Cambridge 1872), Poeciloneta theridiformis Emerton 1911, and Poeciloneta vakkhanka (Tanasevitch 1989). The following five species have been reported previously in Alaska, but not near Toolik Lake: Hypsosinga groenlandica Simon 1889, Gnaphosa borea Kulczyn'ski 1908, Gnaphosa microps Holm 1939, Haplodrassus hiemalis (Emerton 1909), and Islandiana cristata Eskov 1987. Pairwise similarity indices were calculated across 13 other arctic and subarctic spider communities and statistical tests show that all sites are dissimilar (p = 0.25). These results fit the general pattern of both the patchiness and habitat specificity of arctic spider fauna.
Resumo:
Thermokarst lakes are thought to have been an important source of methane (CH4) during the last deglaciation when atmospheric CH4 concentrations increased rapidly. Here we demonstrate that meltwater from permafrost ice serves as an H source to CH4 production in thermokarst lakes, allowing for region-specific reconstructions of dD-CH4 emissions from Siberian and North American lakes. dD CH4 reflects regionally varying dD values of precipitation incorporated into ground ice at the time of its formation. Late Pleistocene-aged permafrost ground ice was the dominant H source to CH4 production in primary thermokarst lakes, whereas Holocene-aged permafrost ground ice contributed H to CH4 production in later generation lakes. We found that Alaskan thermokarst lake dD-CH4 was higher (-334 ± 17 per mil) than Siberian lake dD-CH4 (-381 ± 18 per mil). Weighted mean dD CH4 values for Beringian lakes ranged from -385 per mil to -382 per mil over the deglacial period. Bottom-up estimates suggest that Beringian thermokarst lakes contributed 15 ± 4 Tg CH4 /yr to the atmosphere during the Younger Dryas and 25 ± 5 Tg CH4 /yr during the Preboreal period. These estimates are supported by independent, top-down isotope mass balance calculations based on ice core dD-CH4 and d13C-CH4 records. Both approaches suggest that thermokarst lakes and boreal wetlands together were important sources of deglacial CH4.
Resumo:
Four seismic surveys and a stratigraphic record from southernmost Patagonia (Argentina) based on 51 AMS-14C dates obtained in the framework of ICDP expedition 5022 "Potrok Aike Maar Lake Sediment Archive Drilling Project" (PASADO) provide a database to compare the 106 m composite profile from the lake centre with piston cores from the littoral and outcrops in the catchment area. Based on event correlation using distinct volcanic ash layers with unique geochemical composition and optically stimulated luminescence (OSL) dates on feldspars, sediment records are firmly linked. This approach allows to match the sediment record with water levels during the past ca. 49 ka providing evidence for lake level variations. Reconstructed lake levels were 20 m higher than today during the last Glacial until the early Holocene. With the migration of the Southern Hemispheric Westerlies over this site the lake level dropped ca. 55 m for a period of two millennia. Thereupon the water balance was more positive again causing a stepwise rise of the lake level until the maximum was reached during the Little Ice Age with a subsequent lowering since the 20th century. We suggest that the mid- to late-Holocene lake level variation is caused by intensity changes of the Southern Hemispheric Westerlies.
Resumo:
We present subdaily ice flow measurements at four GPS sites between 36 and 72 km from the margin of a marine-terminating Greenland outlet glacier spanning the 2009 melt season. Our data show that >35 km from the margin, seasonal and shorter-time scale ice flow variations are controlled by surface melt-induced changes in subglacial hydrology. Following the onset of melting at each site, ice motion increased above background for up to 2 months with resultant up-glacier migration of both the onset and peak of acceleration. Later in our survey, ice flow at all sites decreased to below background. Multiple 1 to 15 day speedups increased ice motion by up to 40% above background. These events were typically accompanied by uplift and coincided with enhanced surface melt or lake drainage. Our results indicate that the subglacial drainage system evolved through the season with efficient drainage extending to at least 48 km inland during the melt season. While we can explain our observations with reference to evolution of the glacier drainage system, the net effect of the summer speed variations on annual motion is small (~1%). This, in part, is because the speedups are compensated for by slowdowns beneath background associated with the establishment of an efficient subglacial drainage system. In addition, the speedups are less pronounced in comparison to land-terminating systems. Our results reveal similarities between the inland ice flow response of Greenland marine- and land-terminating outlet glaciers.
Resumo:
Component natural remanent magnetizations derived from u-channel and 1-qcm discrete samples from ODP Site 919 (Irminger Basin) indicate the existence of four intervals of negative inclinations in the upper Brunhes Chronozone. According to the age model based on planktic oxygen isotope data, these "excursional" intervals occur in sediments deposited during the following time intervals: 32-34 ka, 39-41 ka, 180-188 ka and 205-225 ka. These time intervals correspond to polarity excursions detected elsewhere, known as Mono Lake, Laschamp, Iceland Basin and Pringle Falls. The isotope-based age model is supported by the normalized remanence (paleointensity) record that can be correlated to other calibrated paleointensity records for the 0-500 ka interval, such as that from ODP Site 983. For the intervals associated with the Mono Lake and Laschamp excursions, virtual geomagnetic poles (VGPs) reach equatorial latitudes and mid-southerly latitudes, respectively. For intervals associated with the Iceland Basin and Pringle Falls excursions, repeated excursions of VGPs to high southerly latitudes indicate rapid directional swings rather than a single short-lived polarity reversal. The directional instability associated with polarity excursions is not often recorded, probably due to smoothing of the sedimentary record by the process of detrital remanence (DRM) acquisition.
Resumo:
Antarctic ice-free areas contain lakes and ponds that have interesting limnological features and are of wide global significance as early warning indicators of climatic and environmental change. However, most limnological and paleolimnological studies in continental Antarctica are limited to certain regions. There are several ice-free areas in Victoria Land that have not yet been studied well. There is therefore a need to extend limnological studies in space and time to understand how different geological and climatic features affect the composition and biological activity of freshwater communities. With the aim of contributing to a better limnological characterization of Victoria Land, this paper reports data on sedimentary pigments (used to identify the main algal taxa) obtained through a methodology that is more sensitive and selective than that of previous studies. Analyses were extended to 48 water bodies in ice-free areas with differing lithology, latitude, and altitude, and with different morphometry and physical, chemical, and biological characteristics in order to identify environmental factors affecting the distribution and composition of freshwater autotrophic communities. A wider knowledge of lakes in a limnologically important region of Antarctica was obtained. Cyanophyta was found to be the most important algal group, followed by Chlorophyta and Bacillariophyta, whereas latitude and altitude are the main factors affecting pigment distribution.