576 resultados para BURIAL DIAGENESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical challenges in obtaining high quality measurements of rare earth elements (REEs) from small pore fluid volumes have limited the application of REEs as deep fluid geochemical tracers. Using a recently developed analytical technique, we analyzed REEs from pore fluids collected from Sites U1325 and U1329, drilled on the northern Cascadia margin during the Integrated Ocean Drilling Program (IODP) Expedition 311, to investigate the REE behavior during diagenesis and their utility as tracers of deep fluid migration. These sites were selected because they represent contrasting settings on an accretionary margin: a ponded basin at the toe of the margin, and the landward Tofino Basin near the shelf's edge. REE concentrations of pore fluid in the methanogenic zone at Sites U1325 and U1329 correlate positively with concentrations of dissolved organic carbon (DOC) and alkalinity. Fractionations across the REE series are driven by preferential complexation of the heavy REEs. Simultaneous enrichment of diagenetic indicators (DOC and alkalinity) and of REEs (in particular the heavy elements Ho to Lu), suggests that the heavy REEs are released during particulate organic carbon (POC) degradation and are subsequently chelated by DOC. REE concentrations are greater at Site U1325, a site where shorter residence times of POC in sulfate-bearing redox zones may enhance REE burial efficiency within sulfidic and methanogenic sediment zones where REE release ensues. Cross-plots of La concentrations versus Cl, Li and Sr delineate a distinct field for the deep fluids (z > 75 mbsf) at Site U1329, and indicate the presence of a fluid not observed at the other sites drilled on the Cascadia margin. Changes in REE patterns, the presence of a positive Eu anomaly, and other available geochemical data for this site suggest a complex hydrology and possible interaction with the igneous Crescent Terrane, located east of the drilled transect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pigmy Basin sediments cored in Hole 619 of Deep Sea Drilling Project Leg 96 are silty clays composed, on the average, of < 1% sand, 37% silt, 48% clay, and 14% carbonate minerals. Except for minor grain dissolution in some silt grains, there is no distinctive variation with depth in either composition or texture of the sand- and silt-sized minerals. This suggests a constant source of sediment supply and little diagenetic alteration of these size fractions. Clay minerals are dominated by smectite or, more precisely, montmorillonite. On the average, the clay-sized fraction consists of 48% smectite and mixed layer minerals, 30% illite, and 23% total kaolinite and chlorite. There appears to be a slight decrease in smectite and concomitant increases in other clay minerals with depth. These changes are further substantiated by the variations of ammonium acetate exchangeable K+, Mg2+, and Na+ in bulk samples. Thus, incipient diagenesis of Pigmy Basin sediments is evidenced in the mineralogical and associated chemical characteristics of the clay fractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pore water and solid phase from surface sediments of the continental slope off Uruguay and from the Argentine Basin (southwestern Atlantic) were investigated geochemically to ascribe characteristic early diagenetic reactions of iron and manganese. Solid-phase iron speciation was determined by extractions as well as by Mössbauer spectroscopy. Both methods showed good agreement (<6% deviation) for total-Fe speciation. The proportion of easy reducible iron oxyhydroxide relative to total-Fe oxides decreased from the continental slope to the deep sea which is attributed to an increase in crystallinity during transport as well as to a general decrease of iron mobilization. The product of iron reoxidation is Fe oxyhydroxide which made up less than 5% of total Fe. In addition to this fraction, a proportion of smectite bound iron was found to be redox reactive. This fraction made up to 10% of total Fe in sediments of the Argentine Basin and was quantitatively extracted by 1 N HCl. The redox reactive Fe(+II) fraction of smectite was almost completely reoxidized within 24 h under air atmosphere and may therefore considerably contribute to iron redox cycling if bioturbation occurs. In the case of the slope sediments we found concurrent iron and manganese release to pore water. It is not clear whether this is caused by dissimilatory iron and manganese reduction at the same depth or dissimilatory iron reduction alone inducing Mn(+IV) reduction by (abiotic) reaction with released Fe2+. The Argentine Basin sediment showed a significant manganese solid-phase enrichment above the denitrification depth despite the absence of a distinct pore-water gradient of Mn. This implies a recent termination of manganese mobilization and thus a non-steady-state situation with respect to sedimentation or to organic carbon burial rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediments of the Barbados Ridge complex, cored on DSDP Leg 78A, contain low concentrations of acid-insoluble carbon (0.05-0.25%) and nitrogen (C/N 1.5-5) and dispersed C1-C6 hydrocarbons (100-800 ppb). The concentrations of organic carbon and 13C in organic carbon decrease with depth, whereas the concentration of dispersed hydrocarbons increases slightly with depth. These trends may reflect the slow oxidation of organic matter, with selective removal of 13C and slow conversion of the residual organic matter to hydrocarbons. Very minor indications of nitrogen gas were observed at about 250 meters sub-bottom at two of the drilling sites. Basement basalts have calcite veins with d13C values in the range of 2.0 to 3.2 per mil and d18O-SMOW values ranging from 28.5 to +30.6 per mil. Interstitial waters have d18O-SMOW of 0.2 to -3.5 per mil and dD-SMOW of -2 to -15 per mil. The oxygen isotopic composition of the calcite veins in the basement basalts gives estimated equilibrium fractionation temperatures in the range of 11 to 24°C, assuming precipitation from water with d18O-SMOW in the range of +0.1 to -1.0 per mil. This suggests that basalt alteration and precipitation of vein calcite occurred in contact either with warmer Campanian seawater or, later, with pore water, after burial to depths of 200- 300 meters. Pore waters from all three sites are depleted in deuterium and 18O, and dissolved sulfate is enriched in 34S at Sites 541 and 542, but not at Site 543.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep-sea pore fluids are potential archives of ancient seawater chemistry. However, the primary signal recorded in pore fluids is often overprinted by diagenetic processes. Recent studies have suggested that depth profiles of Mg concentration in deep-sea carbonate pore fluids are best explained by a rapid rise in seawater Mg over the last 10-20 Myr. To explore this possibility we measured the Mg isotopic composition of pore fluids and carbonate sediments from Ocean Drilling Program (ODP) site 807. Whereas the concentration of Mg in the pore fluid declines with depth, the isotopic composition of Mg in the pore fluid increases from -0.78 per mil near the sediment-water interface to -0.15 per mil at 778 mbsf. The Mg isotopic composition of the sediment, with few important exceptions, does not change with depth and has an average d26Mg value of -4.72 per mil. We reproduce the observed changes in sediment and pore-fluid Mg isotope values using a numerical model that incorporates Mg, Ca and Sr cycling and satisfies existing pore-fluid Ca isotope and Sr data. Our model shows that the observed trends in magnesium concentrations and isotopes are best explained as a combination of two processes: a secular rise in the seawater Mg over the Neogene and the recrystallization of low-Mg biogenic carbonate to a higher-Mg diagenetic calcite. These results indicate that burial recrystallization will add Mg to pelagic carbonate sediments, leading to an overestimation of paleo-temperatures from measured Mg/Ca ratios. The Mg isotopic composition of foraminiferal calcite appears to be only slightly altered by recrystallization making it possible to reconstruct the Mg isotopic composition of seawater through time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nodules occur in the siliceous calcareous ooze and siliceous marl at Site 503 in the eastern equatorial Pacific. They are present below a depth of about 11 meters throughout the green-colored reduced part of the section down to 228 meters, although they are most abundant between 30 and 85 meters. They are cylindrical or barrel-shaped, up to 70 mm long, and usually have an axial channel through them or are hollow. They appear to have formed around and/or within burrows. XRD studies and microprobe analyses show that they are homogeneous and consist of calcian rhododrosite and minor calcite; Mn is present to the extent of about 30%. Isotopic analyses of the carbonate give carbon values which range from -1.2 per mil to -3.8 per mil, and oxygen isotope compositions vary from +4.0 per mil to +6.0 per mil. These values are different from those for marine-derived carbonates as exemplified by the soft sediment filling of a burrow: d13C, -0.26 per mil; d18O, +1.05 per mil. The carbon isotope data indicate that carbonate derived (possibly indirectly) from seawater was mixed with some produced by organic diagenesis to form the nodules. The d18O values suggest that although they formed near the sediment surface, some modification or the introduction of additional diagenetic carbonate occurred during burial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of neogenic opaline structures, not previously reported in the literature, as well as other neogenic phases are described from four Oligocene to Pliocene biosiliceous sediment samples from Hole 699A. The possible influence of microbes on the formation or the morphology of some of them is discussed. The samples, which are early Pliocene, early to middle Miocene, and late Oligocene (two) in age, were histologically fixed aboard ship upon retrieval. Investigations of the samples used SEM (with Edax/Tracor) and XRD methods. Diagenesis has affected all four samples, but the most extensive development of neoformed structures occurs in the Miocene and uppermost Oligocene samples, where microbial filaments (0.05 to 10 ?m long), microbial colonies, and siliceous microhemispheroids (0.2 to 0.7 µm diameter) were observed. The latter encrust filaments, diatoms, and detrital grains to varying degrees. Other neoformed structures include (1) flakes formed by coalesced microhemispheroids, some of which are guided by short, stubby filaments, which occur only in the Miocene and uppermost Oligocene samples, and (2) flakes characterized by smooth or microfissured surfaces, which grow on diatom frustules and in pore spaces and have a more widespread distribution. The XRD data indicate possible cristobalite formation in the Miocene and uppermost Oligocene samples; we believe that the neoformed opaline structures (encrusted filaments and microhemispheroids) may represent an early phase of opal-CT. The timing of neoformation of most of these features appears to have been fairly recent, continuing even at the time of sampling. There appears to be no direct correlation of this incipient, lower Miocene-uppermost Oligocene diagenetic layer and the pore-water chemistry profiles; a massive increase in shear strength in these sediments, however, may indicate some cementation. Smectite was identified by XRD as the most prominent clay mineral in these generally clay-poor sediments. Honeycombed minerals with filamentous edges, which could correspond to smectite, were observed with SEM in the pore spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding phosphorus (P) geochemistry and burial in oceanic sediments is important because of the role of P for modulating oceanic productivity on long timescales. We investigated P geochemistry in seven equatorial Pacific sites over the last 53 Ma, using a sequential extraction technique to elucidate sedimentary P composition and P diagenesis within the sediments. The dominant P-bearing component in these sediments is authigenic P (61-86% of total P), followed in order of relative dominance by iron-bound P (7-17%), organic P (3-12%), adsorbed P (2-9%), and detrital P (0-1%). Clear temporal trends in P component composition exist. Organic P decreases rapidly in younger sediments in the eastern Pacific (the only sites with high sample resolution in the younger intervals), from a mean concentration of 2.3 µmol P/g sediment in the 0-1 Ma interval to 0.4 µmol/g in the 5- 6 Ma interval. Over this same time interval, decreases are also observed for iron-bound P (from 2.1 to 1.1 µmol P/g) and adsorbed P (from 1.5 to 0.7 µmol P/g). These decreases are in contrast to increases in authigenic P (from 6.0-9.6 µmol P/g) and no significant changes in detrital P (0.1 µmol P/g) and total P (12 µmol P/g). These temporal trends in P geochemistry suggest that (1) organic matter, the principal shuttle of P to the seafloor, is regenerated in sediments and releases associated P to interstitial waters, (2) P associated with iron-rich oxyhydroxides is released to interstitial waters upon microbial iron reduction, (3) the decrease in adsorbed P with age and depth probably indicates a similar decrease in interstitial water P concentrations, and (4) carbonate fluorapatite (CFA), or another authigenic P-bearing phase, precipitates due to the release of P from organic matter and iron oxyhydroxides and becomes an increasingly significant P sink with age and depth. The reorganization of P between various sedimentary pools, and its eventual incorporation in CFA, has been recognized in a variety of continental margin environments, but this is the first time these processes have been revealed in deep-sea sediments. Phosphorus accumulation rate data from this study and others indicates that the global pre-anthropogenic input rate of P to the ocean (20x10**10 mol P/yr) is about a factor of four times higher than previously thought, supporting recent suggestions that the residence time of P in the oceans may be as short as 10000-20000 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined changes in equatorial Pacific phosphorus (µmol P/g) and barite (BaSO4; wt%) concentrations at high resolution (2 cm) across the Paleocene/Eocene (P/E) boundary in sediments from Ocean Drilling Program (ODP) Leg 199 Site 1221 (153.40 to 154.80 meters below seafloor [mbsf]). Oxide-associated, authigenic, and organic P sequentially extracted from bulk sediment were used to distinguish reactive P from detrital P. We separated barite from bulk sediment and compared its morphology with that of modern unaltered biogenic barite to check for diagenesis. On a CaCO3-free basis, reactive P concentrations are relatively constant and high (323 µmol P/g or ~1 wt%). Barite concentrations range from 0.05 to 5.6 wt%, calculated on a CaCO3-free basis, and show significant variability over this time interval. Shipboard measurements of P and Ba in bulk sediments are systematically lower (by ~25%) than shore-based concentrations and likely indicate problems with shipboard standard calibrations. The presence of Mn oxides and the size, crystal morphology, and sulfur isotopes of barite imply deposition in sulfate-rich pore fluids. Relatively constant reactive P, organic C, and biogenic silica concentrations calculated on a CaCO3-free basis indicate generally little variation in organic C, reactive P, and biogenic opal burial across the P/E boundary, whereas variable barite concentrations indicate significant changes in export productivity. Low barite Ba/reactive P ratios before and immediately after the Benthic Extinction Event (BEE) may indicate efficient nutrient burial, and, if nutrient burial and organic C burial are linked, high relative organic C burial that could temporarily drawdown CO2 at this site. This interpretation requires postdepositional oxidation of organic C because organic C to reactive P ratios are low throughout the section. After the BEE, higher barite Ba/reactive P ratios combined with higher barite Ba concentrations may imply that higher export productivity was coupled with unchanged reactive P burial, indicating efficient nutrient and possibly also organic C recycling in the water column. If the nutrient recycling is decoupled from organic C, the high export production could be indicative of drawdown of CO2. However, the observation that organic C burial is not high where barite burial is high may imply that either C sequestration was restricted to the deep ocean and thus occurred only on timescales of the deep ocean mixing or that postdepositional oxidation (burn down) of organic matter affected the sediments. The decoupling of barite and opal may result from low opal preservation or production that is not diatom based.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 15-meter sequence of early Aptian organic-matter-rich sediments, cored at Deep Sea Drilling Project Site 463 (western Mid-Pacific Mountains) has been submitted for detailed mineralogical studies (XRD, SEM) and organiccarbon characterization. Although intense diagenesis has obscured the sedimentary record of depositional conditions, the history has been tentatively reconstructed. Through sustained volcanic activity and alteration processes on the archipelago, large amounts of silica were released into the sea water, resulting in a "bloom" of radiolarians. Hard parts settled in large amounts, yielding a hypersiliceous sediment; amorphous silica was diagenetically transformed into chalcedony, opal-CT and clinoptilolite through dissolution and recrystallization. Oxidization of part of the radiolarian soft parts (1) depleted the sea water in dissolved oxygen, allowing the burial of organic matter, and (2) generated carbon dioxide which led to dissolution of most of the calcareous tests. Moderate depositional depth and a high sedimentation rate are though to have prevailed during this episode. An immature stage of evolution is assigned to the studied organic matter, which is of two origins: autochthonous marine material, and allochthonous humic compounds and plant debris. Rhythmic sedimentation characterizes the distribution of the organic matter; each sequence shows (1) an upward progressive increase in organic-carbon content, and (2) an upward enrichment in marine organic matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Re-Os and Pb-Pb isotopic analysis of reduced varved sediments cored in the deeper basin of Saanich Inlet (B.C.) are presented. From core top to 61 cm down-core, spanning approximately the last 100 yrs of sedimentation, 187Os/188Os ratio and Os concentration respectively increase from ~0.8 to ~0.9 and from 55 to 60 ppt, whereas Re concentration decreases from 3600 to 2600 ppt. Re correlates with Corg (R2=0.6) throughout the entire section, whereas Os follows Re and Corg trends deeper down-core, suggesting a decoupling of a Re- and Os-geochemistry during burial and/or very early diagenesis. No systematic compositional differences are observed between seasonal laminae. 204Pb-normalized lead isotope ratios increase from sediment surface down to 7 cm down-core, then decrease steadily to pre-industrial levels at ~50 cm down-core. This pattern illustrates the contamination from leaded gasoline until the recent past. The measured Pb isotopic ratios point primarily toward gasoline related atmospheric lead from the USA. The osmium isotopic values measured are significantly lower than those of modern seawater-Os. In comparison with other anoxic environments, the osmium content of Saanich Inlet sediments is low, and its Os isotopic composition suggests significant inputs from unradiogenic sources (detrital and/or dissolved). Ultramafic lithologies in the watershed of the Fraser River are suspected to contribute to sedimentary inputs as well as to the input of dissolved unradiogenic osmium in the water of Saanich Inlet. The presence of some unradiogenic Os from anthropogenic contamination cannot be discounted near the core top, but since deeper, pre-anthropogenic levels also yielded unradiogenic Os results, one is led to conclude that the overall low 187Os/188Os ratios result from natural geochemical processes. Thus, the bulk sediment of Saanich Inlet does not appear to record 187Os/188Os composition of the marine end-member of the only slightly below normal salinity, fjord water. The low seawater-derived Os content of the sediment, coupled with unradiogenic Os inputs from local sources, explains the overall low isotopic values observed. As a consequence, such near-shore anoxic sediments are unlikely to record changes in the past ocean Os isotopic composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty-six core samples from Leg 64, Holes 474, 474A, 477, 478, 479, and 481A in the Gulf of California, were provided by the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Advisory Panel on Organic Geochemistry for analysis. The high heat flow characteristic of the basin provides an opportunity to study the effect of temperature on the diagenesis of organic matter. The contents and carbon isotope compositions of the organic matter and bitumen fractions of different polarity, isoprenoid and normal alkane distributions, and the nature of tetrapyrrole pigments were studied. Relative contents of hydrocarbons and bitumens depend on the thermal history of the deposits. Among other criteria, the nature and content of tetrapyrrole pigments appear to be most sensitive to thermal stress. Whereas only chlorins are present in the immature samples, porphyrins, including VO-porphyrins, appear in the thermally altered deposits, despite the shallow burial depth. Alkane distributions in thermally changed samples are characterized by low values of phytane to 2-C18 ratios and an odd/even carbon preference index close to unity. The thermally altered samples show unusual carbon isotope distributions of the bitumen fractions. The data also provide some evidence concerning the source of the organic matter and the degree of diagenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leg 190 was the first of a two-leg program across the Nankai accretionary prism and Trough, offshore Japan, aiming to evaluate existing models for prism evolution and to constrain syntectonic sedimentation, deformation styles, mechanical properties, and prism hydrology (Moore, Taira, Klaus, et al., 2001; Moore et al., 2001). More than 400 volcanic ash and siliceous claystone (altered ash) layers were penetrated and sampled during drilling of the six sites from two transects across the accretionary prism (Sites 1173-1178). In sites from the subducting Shikoku Basin (Sites 1173 and 1177) and in the trench axis (Site 1174), recognition of ash layers and diagenetically altered ashes was initially important in defining major lithostratigraphic units. However, it is clear that understanding the diagenesis of the volcanic ashes has considerable implications for prism evolution, mechanical properties, prism hydrology, geochemistry, and fluid flow in the accretionary prism and associated subducting sediments (cf. Masuda et al., 1996, doi 10.1346/CCMN.1996.0440402). Particle size, chemical composition, temperature, depth of burial, and time are all thought to be factors that may affect volcanic ash diagenesis and preservation (Kuramoto et al., 1992, doi:10.2973/odp.proc.sr.127128-2.235.1992; Underwood et al., 1993, doi:10.2973/odp.proc.sr.131.137.1993). The overall aim of this research is to evaluate factors influencing volcanic ash diagenesis in the Nankai Trough area. This data report presents just the results of the sedimentological and petrographic analysis of the volcanic ashes and siliceous claystones from Sites 1173, 1174, and 1177. It is anticipated that when the results of additional geochemical analysis of these lithologies is available a more meaningful evaluation of factors influencing volcanic ash alteration will be possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sediments penetrated on Leg 58 of the Deep Sea Drilling Project in the Philippine Sea represent long periods of geologic time during which depositional conditions apparently remained very constant. Organic carbon and nitrogen contents of the sediments decrease with increasing depth of burial, before leveling off at minimum values of about 0.05 to 0.10 per cent and 0.01 per cent, respectively. The depth at which the minimum values are reached varies from site to site, but ages of sediments corresponding to the minima are all about 5 m.y. We infer that slow bacterial diagenesis is responsible for the gradual depletion of organic carbon and nitrogen. It is likely that the rate of bacterial metabolism is controlled by the rate of diffusion of electron acceptors within the sediments. These results suggest that bacterial ecosystems in deep-water sediments play a much more important role in diagenesis than has previously been thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen isotope data for upper Turonian planktonic foraminifera at Deep Sea Drilling Project Site 511 (Falkland Plateau, 60°S paleolatitude) exhibit an ~2 per mil excursion to values as low as -4.66 per mil (Vienna Peedee belemnite standard; PDB) coincident with the warmest tropical temperature estimates yet obtained for the open ocean. The lowest planktonic foraminifer d18O values suggest that the upper ocean was as warm as 30-32°C. This is an extraordinary temperature for 60°S latitude but is consistent with temperatures estimated from apparently coeval mollusc d18O from nearby James Ross Island (65°S paleolatitude). Glassy textural preservation, a well-defined depth distribution in Site 511 planktonics, low sediment burial temperature (~32°C), and lack of evidence of highly depleted pore waters argue against diagenesis (even solid state diffusion) as the cause of the very depleted planktonic values. The lack of change in benthic foraminifer d18O suggests brackish water capping as the mechanism for the low planktonic d18O values. However, mixing ratio calculations show that the amount of freshwater required to produce a 2 per mil shift in ambient water would drive a 7 psu decrease in salinity. The abundance and diversity of planktonic foraminifera and nannofossils, high planktonic:benthic ratios, and the appearance of keeled foraminifera argue against lower-than-normal marine salinities. Isotope calculations and climate models indicate that we cannot call upon more depleted freshwater d18O to explain this record. Without more late Turonian data, especially from outside the South Atlantic basin, we can currently only speculate on possible causes of this paradoxical record from the core of the Cretaceous greenhouse.