203 resultados para BIS(IMINO)PYRIDYL IRON(II)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The redox stratification of bottom sediments in Kandalaksha Bay, White Sea, is characterized by elevated concentrations of Mn (3-5%) and Fe (7.5%) in the uppermost layer, which is two orders of magnitude and one and a half times, respectively, higher than the average concentrations of these elements in the Earth's crust. The high concentrations of organic matter (Corg = 1-2%) in these sediments cannot maintain (because of its low reaction activity) the sulfate-reducing process (the concentration of sulfide Fe is no higher than 0.6%). The clearest manifestation of diagenesis is the extremely high Mn2+ concentration in the silt water (>500 µM), which causes its flux into the bottom water, oxidation in contact with oxygen, and the synthesis of MnO2 oxy-hydroxide enriching the surface layer of the sediments. Such migrations are much less typical of Fe. Upon oxygen exhaustion in the uppermost layer of the sediments, the synthesized oxyhydroxides (MnO2 and FeOOH) serve as oxidizers of organic matter during anaerobic diagenesis. The calculated diffusion-driven Mn flux from the sediments (280 µM/m**2 day) and corresponding amount of forming Mn oxyhydrate as compared to opposite oxygen flux to sediments (1-10 mM/m**2 day) indicates that >10% organic matter in the surface layer of the sediments can be oxidized with the participation of MnO2. The roles of other oxidizers of organic matter (FeOOH and SO4**2-) becomes discernible at deeper levels of the sediments. The detailed calculation of the balance of reducing processes testifies to the higher consumption of organic matter during the diagenesis of surface sediments than it follows from the direct determination of Corg. The most active diagenetic redox processes terminate at depths of 25-50 cm. Layers enriched in Mn at deeper levels are metastable relicts of its surface accumulation and are prone to gradual dissemination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the 13 day Southern Ocean Iron RE-lease Experiment (SOIREE), dissolved iron concentrations decreased rapidly following each of three iron-enrichments, but remained high (>1 nM, up to 80% as FeII) after the fourth and final enrichment on day 8. The former trend was mainly due to dilution (spreading of iron-fertilized waters) and particle scavenging. The latter may only be explained by a joint production-maintenance mechanism; photoreduction is the only candidate process able to produce sufficiently high FeII, but as such levels persisted overnight (8 hr dark period) -ten times the half-life for this species- a maintenance mechanism (complexation of FeII) is required, and is supported by evidence of increased ligand concentrations on day 12. The source of these ligands and their affinity for FeII is not known. This retention of iron probably permitted the longevity of this bloom raising fundamental questions about iron cycling in HNLC (High Nitrate Low Chlorophyll) Polar waters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Total dissolvable iron (TDFe), particulate iron (PFe) and hydrogen peroxide (H2O2 measurements were performed along a N-S transect in the upper 250 m in the Southern Ocean (62°00E/66°42S - 49°00S, ANTARES II cruise, February 1994). TDFe was organically extracted (APDC/DDDC-chloroform) and analysed by Graphite Furnace Atomic Absorption Spectrometry (GFAAS), PFe was analysed by GFAAS following a strong mixed-acid leach, and H2O2 was analysed on board by fluorometry. The respective detection limits are equal to 0.13 nmol/kg, 0.02 nmol/kg, and 3.0 nmol/kg. TDFe concentrations vary from 0.4 to 6.2 nmol/kg and profiles are not completely depleted in the surface. PFe concentrations vary from 0.02 to 0.2 nmol/kg. Iron/carbon (Fe/C) uptake ratios for phytoplankton were calculated either from seawater or particle measurements. They are variable along the transect but are consistent when they could be compared. All the observed ratios are within the range of values proposed for the Fe/C uptake ratios by phytoplankton. Using our uptake ratio calculated in the Permanent Open Ocean Zone (4 x 10**?6 mol/mol), we estimate that the primary production which can be supported by the iron input flux into the surface waters is two times higher than the measured primary production in the same area. In the surface waters, H2O2 concentrations vary from 5.0 to 19.7 nmol/kg. Such low concentrations are due to strong vertical mixing, low dissolved organic matter concentrations and the latitude of the site.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Ross Sea polynya is among the most productive regions in the Southern Ocean and may constitute a significant oceanic CO2 sink. Based on results from several field studies, this region has been considered seasonally iron limited, whereby a "winter reserve" of dissolved iron (dFe) is progressively depleted during the growing season to low concentrations (~0.1 nM) that limit phytoplankton growth in the austral summer (December-February). Here we report new iron data for the Ross Sea polynya during austral summer 2005-2006 (27 December-22 January) and the following austral spring 2006 (16 November-3 December). The summer 2005-2006 data show generally low dFe concentrations in polynya surface waters (0.10 ± 0.05 nM in upper 40 m, n = 175), consistent with previous observations. Surprisingly, our spring 2006 data reveal similar low surface dFe concentrations in the polynya (0.06 ± 0.04 nM in upper 40 m, n = 69), in association with relatively high rates of primary production (~170-260 mmol C/m**2/d). These results indicate that the winter reserve dFe may be consumed relatively early in the growing season, such that polynya surface waters can become "iron limited" as early as November; i.e., the seasonal depletion of dFe is not necessarily gradual. Satellite observations reveal significant biomass accumulation in the polynya during summer 2006-2007, implying significant sources of "new" dFe to surface waters during this period. Possible sources of this new dFe include episodic vertical exchange, lateral advection, aerosol input, and reductive dissolution of particulate iron.