44 resultados para Axis 1


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Leg 66 eight sites on an active margin transect off southern Mexico were drilled in order to determine the nature of ocean-continent transition across a subduction zone. Present outcrops of Mesozoic to Precambrian basement at the coast intruded by Mesozoic magmas within only 65 km of the Middle America Trench axis indicate truncation of the continental margin, tectonic removal of an accretionary zone, and consumption of ocean sediments and crust by subduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. The common occurrence of these structures in slow and ultra-slow spread oceanic crust suggests that they accommodate a significant component of plate divergence. However, the subsurface geometry of detachment faults in oceanic core complexes remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We address this debate using palaeomagnetic remanences as markers for tectonic rotation within a unique 1.4 km long footwall section of gabbroic rocks recovered by Integrated Ocean Drilling Program (IODP) sampling at Atlantis Massif oceanic core complex on the Mid-Atlantic Ridge (MAR). These rocks contain a complex record of multipolarity magnetizations that are unrelated to alteration and igneous stratigraphy in the sampled section and are inferred to result from progressive cooling of the footwall section over geomagnetic polarity chrons C1r.2r, C1r.1n (Jaramillo) and C1r.1r. For the first time we have independently reoriented drill-core samples of lower crustal gabbros, that were initially azimuthally unconstrained, to a true geographic reference frame by correlating structures in individual core pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of the palaeomagnetic data, placing far more rigorous constraints on the tectonic history than those possible using only palaeomagnetic inclination data. Analysis of the reoriented high temperature reversed component of magnetization indicates a 46° ± 6° anticlockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011° ± 6°. Reoriented lower temperature components of normal and reversed polarity suggest that much of this rotation occurred after the end of the Jaramillo chron (0.99 Ma). The data provide unequivocal confirmation of the key prediction of flexural, rolling-hinge models for oceanic core complexes, whereby oceanic detachment faults initiate at higher dips and rotate to their present day low-angle geometries as displacement increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Newly acquired bathymetric and seismic reflection data have revealed mass-transport deposits (MTDs) on the northeastern Cretan margin in the active Hellenic subduction zone. These include a stack of two submarine landslides within the Malia Basin with a total volume of approximately 4.6 km**3 covering an area of about 135 km**2. These two MTDs have different geometry, internal deformations and transport structures. The older and stratigraphic lower MTD is interpreted as a debrite that fills a large part of the Malia Basin, while the second, younger MTD, with an age of at least 12.6 cal. ka B.P., indicate a thick, lens-shaped, partially translational landslide. This MTD comprises multiple slide masses with internal structure varying from highly deformed to nearly undeformed. The reconstructed source area of the older MTD is located in the westernmost Malia Basin. The source area of the younger MTD is identified in multiple headwalls at the slope-basin-transition in 450 m water depth. Numerous faults with an orientation almost parallel to the southwest-northeast-trending basin axis occur along the northern and southern boundaries of the Malia Basin and have caused a partial steepening of the slope-basin-transition. The possible triggers for slope failure and mass-wasting include (i) seismicity and (ii) movement of the uplifting island of Crete from neotectonics of the Hellenic subduction zone, and (iii) slip of clay-mineral-rich or ash-bearing layers during fluid involvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dominant processes determining biological structure in lakes at millennial timescales are complex. In this study, we used a multi-proxy approach to determine the relative importance of in-lake versus indirect processes on the Holocene development of an oligotrophic lake in SW Greenland (66.99°N, 50.97°W). A 14C and 210Pb-dated sediment core covering approximately 8500 years BP was analyzed for organic-inorganic carbon content, pigments, diatoms, chironomids, cladocerans, and stable isotopes (d13C, d18O). Relationships among the different proxies and a number of independent controlling variables (Holocene temperature, an isotope-inferred cooling period, and immigration of Betula nana into the catchment) were explored using redundancy analysis (RDA) independent of time. The main ecological trajectories in the lake biota were captured by ordination first axis sample scores (18-32% variance explained). The importance of the arrival of Betula (ca. 6500 years BP) into the catchment was indicated by a series of partial-constrained ordinations, uniquely explaining 12-17% of the variance in chironomids and up to 9% in pigments. Climate influences on lake biota were strongest during a short-lived cooling period (identified by altered stable isotopes) early in the development of the lake when all proxies changed rapidly, although only chironomids had a unique component (8% in a partial-RDA) explained by the cooling event. Holocene climate explained less variance than either catchment changes or biotic relationships. The sediment record at this site indicates the importance of catchment factors for lake development, the complexity of community trends even in relatively simple systems (invertebrates are the top predators in the lake) and the challenges of deriving palaeoclimate inferences from sediment records in low-Arctic freshwater lakes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pore waters were collected from nine sites during Leg 125 of the Ocean Drilling Program (ODP). The first four sites (778-781) were drilled in the Mariana forearc on and near Conical Seamount, an active serpentine "mud volcano" located about 80 km behind the trench axis and 120 km in front of the active island arc. The last five sites (782-786) were drilled in the Izu-Bonin forearc between the trench and the outer arc high. Pore waters from the five sites from both areas that penetrated serpentine silts (Sites 778,779,780,783, and 784) are discussed in detail by Mottl (this volume). Here we report analyses of the pore waters from all nine sites for Li, Rb, Sr, Ba, Mn, B, and the sulfur isotopic ratio of dissolved sulfate. Sampling methods and results of analyses for major and minor species determined aboard ship were presented by Fryer, Pearce, Stokking, et al. (1990, doi:10.2973/odp.proc.ir.125.1990).