82 resultados para Average temperature
Resumo:
It is still an open question how equilibrium warming in response to increasing radiative forcing - the specific equilibrium climate sensitivity S - depends on background climate. We here present palaeodata-based evidence on the state dependency of S, by using CO2 proxy data together with a 3-D ice-sheet-model-based reconstruction of land ice albedo over the last 5 million years (Myr). We find that the land ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. This non-linearity has not, so far, been accounted for in similar approaches due to previously more simplistic approximations, in which land ice albedo radiative forcing was a linear function of sea level change. The latitudinal dependency of ice-sheet area changes is important for the non-linearity between land ice albedo and sea level. In our set-up, in which the radiative forcing of CO2 and of the land ice albedo (LI) is combined, we find a state dependence in the calculated specific equilibrium climate sensitivity, S[CO2,LI], for most of the Pleistocene (last 2.1 Myr). During Pleistocene intermediate glaciated climates and interglacial periods, S[CO2,LI] is on average ~ 45 % larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6-5 Myr BP) the CO2 data uncertainties prevent a well-supported calculation for S[CO2,LI], but our analysis suggests that during times without a large land ice area in the Northern Hemisphere (e.g. before 2.82 Myr BP), the specific equilibrium climate sensitivity, S[CO2,LI], was smaller than during interglacials of the Pleistocene. We thus find support for a previously proposed state change in the climate system with the widespread appearance of northern hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land ice albedo radiative forcing, which is important for similar palaeodata-based approaches to calculate climate sensitivity. However, the implications of this study for a suggested warming under CO2 doubling are not yet entirely clear since the details of necessary corrections for other slow feedbacks are not fully known and the uncertainties that exist in the ice-sheet simulations and global temperature reconstructions are large.
Resumo:
The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3-4 °C. Yet, current reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this time. This stability has been used to suggest that tropical sea-surface temperatures are controlled by some sort of thermostat-like regulation. Here we reconstruct sea surface temperatures in the South China Sea, Caribbean Sea and western equatorial Pacific Ocean for the past five million years, using a combination of the Mg/Ca, TEXH86-and Uk'37 surface temperature proxies. Our data indicate that during the period of Pliocene warmth from about 5 to 2.6 million years ago, the western Pacific and western Atlantic warm pools were about 2 °C warmer than today. We suggest that the apparent lack of warming seen in the previous reconstructions was an artefact of low seawater Mg/Ca ratios in the Pliocene oceans. Taking this bias into account, our data indicate that tropical sea surface temperatures did change in conjunction with global mean temperatures. We therefore conclude that the temperature of the warm pools of the equatorial oceans during the Pliocene was not limited by a thermostat-like mechanism.
Resumo:
Independencia Bay can be considered as one of the most productive invertebratc fishing grounds worldwide. One of the most important exploited species is the scallop (Argopecten purpuratus) with strong catching fluctuations related to El Nino and La Nina events and to inadequate Management strategies. During strong warming periods annual landings reach up to 50000 t in an area of about 150 km**2 and during cold years they remain around 500 to 1000 t. This study analyses the changes in scallop landings at Independencia Bay observed during the last two decades and discusses the main factors affecting the scallop proliferations during the EI Nino events. In this way data on landings, sea surface temperature and those related to growth, reproduction, predation, mean density and oxygen concentration from published and unpublished Papers are used. The relationship between annual catches and average water temperature over the preceding reproductive period of the scallop over the past 20 year's period, showed that scallop production is affected positively only with strong EI Nino such as those of 1983 and 1998. Our review showed that the scallop stock proliferation can be traced to the combined effect of (1) an increase in reproductive output through an acceleration of gonad maturation and a higher spawning frequency; (2) a shortening of the larval period and an increase in larval survival; (3) an increase in the individual growth performance; (4) an increase in the juvenile and adult survival through reduction of predator biomass; (5) an increase in carrying capacity of the scallop banks due to elevated oxygen levels.
Temperature and salinity reconstruction for the Last Interglacial Period in the North Atlantic Ocean
Resumo:
Eight deep-sea sediment cores from the North Atlantic Ocean ranging from 31° to 72°N are studied to reconstruct the meridional gradients in surface hydrographic conditions during the interval of minimum ice volume within the last interglacial period. Using benthic foraminiferal ?18O measurements and estimates of Sea Surface Temperature (SST) and Sea Surface Salinity (SSS), we show that summer SSTs and SSSs decreased gradually during the interval of minimum ice volume at high-latitude sites (52°-72°N) whereas they were stable or increased during the same time period at low-latitude sites (31°-41°N). This increase in meridional gradients of SSTs and SSSs may have been due to changes in the latitudinal distribution of summer and annual-average insolation and associated oceanic and atmospheric feedbacks. These trends documented for the Eemian ice volume minimum period are similar to corresponding changes observed during the Holocene and may have had a similar origin.
Resumo:
Since the early 1990s, phytoplankton has been studied and monitored in Potter Cove (PC) and Admiralty Bay (AB), King George/25 de Mayo Island (KGI), South Shetlands. Phytoplankton biomass is typically low compared to other Antarctic shelf environments, with average spring - summer values below 1 mg chlorophyll a (Chl a)/m**3. The physical conditions in the area (reduced irradiance induced by particles originated from the land, intense winds) limit the coastal productivity at KGI, as a result of shallow Sverdrup's critical depths (Zc) and large turbulent mixing depths (Zt). In January 2010 a large phytoplankton bloom with a maximum of around 20 mg Chl a/m**3, and monthly averages of 4 (PC) and 6 (AB) mg Chl a/m**3, was observed in the area, making it by far the largest recorded bloom over the last 20 yr. Dominant phytoplankton species were the typical bloom-forming diatoms that are usually found in the western Antarctic Peninsula area. Anomalously cold air temperature and dominant winds from the eastern sector seem to explain adequate light : mixing environment. Local physical conditions were analyzed by means of the relationship between Zc and Zt, and conditions were found adequate for allowing phytoplankton development. However, a multiyear analysis indicates that these conditions may be necessary but not sufficient to guarantee phytoplankton accumulation. The relation between maximum Chl a values and air temperature suggests that bottom-up control would render such large blooms even less frequent in KGI under the warmer climate expected in the area during the second half of the present century.
Resumo:
Successful application of the alkenone palaeothermometer, the UK'37 index, relies upon the assumption that fossil alkenone synthesisers responded to growth-temperature changes in a similar manner to the modern producers, chiefly the coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. We compare coccolith and UK'37 data from ODP Site 1087 in the south-east Atlantic between 1500 and 500 ka, and show that evolutionary events and changes in species dominance within the coccolithophore populations had little impact on the UK'37 record. The relative abundances of the C37 and C38 alkenones also closely resembled those found in modern populations, and suggest a similar temperature sensitivity of UK'37 during the early and mid-Pleistocene to that found at present. These results support the application of the UK'37 index to reconstruct sea-surface temperatures (SSTs) throughout the Quaternary. The UK'37 record at ODP Site 1087 contains an SST signal that documents the emergence of the 100-kyr cycles that characterise the late Quaternary ice volume records. This is preceded by significant cooling at ODP Site 1087, marked by a negative shift in SSTs and a positive shift in the planktonic delta18O some 250-kyr earlier, at ca 1150-1000 ka. This results in a permanent fall in average SSTs of around 1.5 °C. The predicted increase in aridity onshore as a result of this cooling can be identified in a number of published records from southern Africa, and may have played a role in some important evolutionary events of the mid-Pleistocene.
Resumo:
Submarine permafrost degradation has been invoked as a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. Sediment drilled 52 m down from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Methane concentrations in the overlying unfrozen sediment were low (mean 20 µM) but higher in the underlying ice-bonded submarine permafrost (mean 380 µM). In contrast, sulfate concentrations were substantially higher in the unfrozen sediment (mean 2.5 mM) than in the underlying submarine permafrost (mean 0.1 mM). Using deduced permafrost degradation rates, we calculate potential mean methane efflux from degrading permafrost of 120 mg/m**2 per year at this site. However, a drop of methane concentrations from 190 µM to 19 µM and a concomitant increase of methane d13C from -63 per mil to -35 per mil directly above the ice-bonded permafrost suggest that methane is effectively oxidized within the overlying unfrozen sediment before it reaches the water column. High rates of methane ebullition into the water column observed elsewhere are thus unlikely to have ice-bonded permafrost as their source.
Resumo:
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on d13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of d18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in d18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that d18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50°C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that d18O values of CO2 were on average 36.4±2.2 per mil (1 sigma, n=15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5 per mil for the experimental temperatures of 50°C. By using 18O enriched water for the experiments it was demonstrated that changes in the d18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in d18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the d18O values of CO2 and water are sufficiently distinct.
Resumo:
In the South Pacific Convergence Zone (SPCZ), the variability in a sub-seasonally resolved microatoll Porites colony Sr/Ca record from Tonga and a previously published high-resolution record from Fiji are strongly influenced by sea surface temperature (SST) over the calibration period from 1981 to 2004 (R^2 = 0.67 - 0.68). However, the Sr/Ca-derived SST correlation to instrumental SST decreases back in time. The lower frequency secular trend (~1°C) and decadal-scale (~2 - 3°C) modes in Sr/Ca-derived SST are almost two times larger than that observed in instrumental SST. The coral Sr/Ca records suggest that local effects on SST generate larger amplitude variability than gridded SST products indicate. Reconstructed d18O of seawater (d18Osw) at these sites correlate with instrumental sea surface salinity (SSS; r = 0.64 - 0.67) but not local precipitation (r = -0.10 to - 0.22) demonstrating that the advection and mixing of different salinity water masses may be the predominant control on d18Osw in this region. The Sr/Ca records indicate SST warming over the last 100 years and appears to be related to the expansion of the western Pacific warm pool (WPWP) including an increasing rate of expansion in the last ~20 years. The reconstructed d18Osw over the last 100 years also shows surface water freshening across the SPCZ. The warming and freshening of the surface ocean in our study area suggests that the SPCZ has been shifting (expanding) southeast, possibly related to the southward shift and intensification of the South Pacific gyre over the last 50 years in response to strengthened westerly winds.
Resumo:
The long-term warmth of the Eocene (~56 to 34 million years ago) is commonly associated with elevated partial pressure of atmospheric carbon dioxide (pCO2). However, a direct relationship between the two has not been established for short-term climate perturbations. We reconstructed changes in both pCO2 and temperature over an episode of transient global warming called the Middle Eocene Climatic Optimum (MECO; ~40 million years ago). Organic molecular paleothermometry indicates a warming of southwest Pacific sea surface temperatures (SSTs) by 3° to 6°C. Reconstructions of pCO2 indicate a concomitant increase by a factor of 2 to 3. The marked consistency between SST and pCO2 trends during the MECO suggests that elevated pCO2 played a major role in global warming during the MECO.
Resumo:
Alkenone unsaturation ratios and planktonic delta18O records from sediment cores of the Alboran, Ionian and Levantine basins in the Mediterranean Sea show pronounced variations in paleo-temperatures and -salinities of surface waters over the last 16,000 years. Average sea surface temperatures (SSTs) are low during the last glacial (averages prior to 13,000 years: 11-15°C), vary rapidly at the beginning of the Holocene, and increase to 17-18°C at all sites during S1 formation (dated between 9500 and 6600 calendar years). The modern temperature gradient (2-3°C) between the Mediterranean sub-basins is maintained during formation of sapropel S1 in the Eastern Mediterranean Sea. After S1, SSTs have remained uniform in the Alboran Sea at 18°C and have fluctuated around 20°C in the Ionian and Levantine Basin sites. The delta18O of planktonic foraminifer calcite decreases by 2 per mil from the late glacial to S1 sediments in the Ionian Basin and by 2.8 per mil in the Levantine Basin. In the Alboran Sea, the decrease is 1.7 per mil. Of the 2.8 per mil decrease in the Levantine Basin, the effect of global ice volume accounts for a maximum of 1.05 per mil and the temperature increase explains only a maximum of 1.3 per mil. The remainder is attributed to salinity changes. We use the temperature and salinity estimates to calculate seawater density changes. They indicate that a reversal of water mass circulation is not a likely explanation for increased carbon burial during S1 time. Instead, it appears that intermediate and deep water formation may have shifted to the Ionian Sea approximately 2000 years before onset of S1 deposition, because surface waters were as cold, but saltier than surface water in the Levantine Basin during the Younger Dryas. Sapropel S1 began to form at the same time, when a significant density decrease also occurred in the Ionian Sea.