145 resultados para Apanteles-kariyai Watanabe
Resumo:
This computational model of irrigation agriculture is used to study the effects of salinization in Mesopotamia. Scholars have long suspected that central and southern Mesopotamia present environments which limited agricultural production over long-term periods. In regions such as central Mesopotamia, where salinization likely affected settlement in different periods but was more manageable than in more southern regions, fallowing regimes, natural and engineered leaching, and decisions made on when to crop were strategies applied in order to limit the effects of salinization. The model is used to assess the effectiveness of these coping strategies by incorporating projected climate, soil, and landscape conditions with agricultural practices. The simulation results not only demonstrate the effectiveness and limitations of techniques to inhibiting progressive salinization but can be compared with the archaeological record in order to determine if the results correspond to past events and help to interpret past settlement history.
Resumo:
Acidification of the oceans by increasing anthropogenic CO2 emissions will cause a decrease in biogenic calcification and an increase in carbonate dissolution. Previous studies have suggested that carbonate dissolution will occur in polar regions and in the deep sea where saturation state with respect to carbonate minerals (Omega) will be <1 by 2100. Recent reports demonstrate nocturnal carbonate dissolution of reefs, despite a Omega a (aragonite saturation state) value of >1. This is probably related to the dissolution of reef carbonate (Mg-calcite), which is more soluble than aragonite. However, the threshold of Omega for the dissolution of natural sediments has not been clearly determined. We designed an experimental dissolution system with conditions mimicking those of a natural coral reef, and measured the dissolution rates of aragonite in corals, and of Mg-calcite excreted by other marine organisms, under conditions of Omega a > 1, with controlled seawater pCO2. The experimental data show that dissolution of bulk carbonate sediments sampled from a coral reef occurs at Omega a values of 3.7 to 3.8. Mg-calcite derived from foraminifera and coralline algae dissolves at Omega a values between 3.0 and 3.2, and coralline aragonite starts to dissolve when Omega a = 1.0. We show that nocturnal carbonate dissolution of coral reefs occurs mainly by the dissolution of foraminiferans and coralline algae in reef sediments.
(Table 3) Representative chemical compositions of chlorite from the Ohmachi Seamount and Sumisu Rift