532 resultados para Angola


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined near-surface, late Holocene deep-sea sediments at nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) along the Southwest African continental margin. Contents, distribution patterns and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) are indicators of land plant vegetation of different biosynthetic types, which can be correlated with concentrations and distributions of pollen taxa in the same sediments. Calculated clusters of wind trajectories and satellite Aerosol Index imagery afford information on the source areas for the lipids and pollen on land and their transport pathways to the ocean sites. This multidisciplinary approach on an almost continental scale provides clear evidence of latitudinal differences in lipid and pollen composition paralleling the major phytogeographic zonations on the adjacent continent. Dust and smoke aerosols are mainly derived from the western and central South African hinterland dominated by deserts, semi-deserts and savannah regions rich in C4 and CAM plants. The northern sites (Congo Fan area and northern Angola Basin), which get most of their terrestrial material from the Congo Basin and the Angolan highlands, may also receive some material from the Chad region. Very little aerosol from the African continent is transported to the most southerly sites in the Cape Basin. As can be expected from the present position of the phytogeographic zones, the carbon isotopic signatures of the n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. The results of the study suggest that this combination of pollen data and compound-specific isotope geochemical proxies can be effectively applied in the reconstruction of past continental phytogeographic developments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge (Rabinowitz and LaBrecque, 1979 doi:10.1029/JB084iB11p05973, Moore et al. (1983 doi:10.1130/0016-7606(1983)94<907:TWRTDS>2.0.CO;2). The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and coraistent with formation at the paleo mid-ocean ridge (Moore et al., 1983). The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other. The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 207Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high 87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan da Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher 143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing of depleted and enriched end member melts or partial melting of an inhomogeneous, variably enriched mantle source. However, observed Zr-Ba-Nb-Y interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cretaceous sediments from DSDP Site 530 have been analyzed for organic carbon isotopic composition. The d13C values in the sediments decrease from -22.7 per mil to -27.5 per mil in the following order: light-olive green mudstone/claystone, dark brown-red mudstone/siltstone/claystone, and black shale. This large range is primarily the result of variation in the relative amounts of terrestrial organic carbon superimposed on that derived from marine organisms. The black shales have an average d13C value of -25.9 per mil (range is from -23.7 per mil to -27.5 per mil). These values indicate that they originated primarily in terrigenous organic materials. The average d13C value present throughout the Cretaceous suggests that a large amount of terrestrial organic matter was supplied into this paleoenvironment, except during the Campanian, when an average d13C of -23.9 per mil is found near the marine end of the range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Qualitative and quantitative analyses of planktonic foraminiferal assemblages from Deep Sea Drilling Project site 532 shed light on hydrographic changes over the Walvis Ridge during the past 500,000 years. From changes in distribution of foraminiferal assemblages, two major hydrographic regimes (coastal and geostrophic branches of the Benguela Current and the Angola Current) can be distinguished at site 532. It is suggested that the hydrographic situation on the northeastern Walvis Ridge was characterized by intensified upwelling and a westward expansion of the coastal upwelling cells during several global cooling pulses. During glacial stages 2-4, the middle part of stage 6, sporadically from the lower stage 8 through upper stage 10, and during stage 12, site 532 was located beneath the coastal branch of the Benguela Current because faunal distribution patterns indicate intensified upwelling. The Angola Current probably intruded the area of study during the lower stages 5, sporadically 6-8, and 11, as documented by the increased abundance of Neogloboquadrina dutertrei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the key objectives of Deep Sea Drilling Project (DSDP) Leg 75 was to shed light on the underlying causes of Cretaceous oceanic anoxia in the South Atlantic by addressing two major hypotheses: productivity productivity-driven anoxia vs. enhanced ocean stratification leading to preservation of organic matter and black shale deposition. Here we present a detailed geochemical dataset from sediments deposited during the Cenomanian/Turonian (C/T) transition and the global oceanic anoxic event 2 (OAE 2) at DSDP Site 530A, located off-shore Namibia (southeast Angola Basin, north of Walvis Ridge). To characterise the succession of alternating black and green shales at this site and to reconstruct the evolution of their paleoenvironmental setting, we have combined data derived from investigations on bulk organic matter, biomarkers and the inorganic fraction. The location of the C/T boundary itself is biostratigraphically not well constrained due to the carbonate-poor (but organic matter-rich) facies of these sediments. The bulk d13Corg record and compound-specific d13C data, in combination with published as well as new biostratigraphic data, enabled us to locate more precisely the C/T boundary at DSDP Site 530A. The compound-specific d13C record is the first of this kind reported from C/T black shales in the South Atlantic. It is employed for paleoenvironmental reconstructions and chemostratigraphic correlation to other C/T sections in order to discuss the paleoceanographic aspects and implications of the observations at DSDP Site 530A in a broader context, e.g., with regard to the potential trigger mechanisms of OAE 2, global changes in black shale deposition and climate. On a stratigraphic level, an approximation and monitoring of the syndepositional degree of oxygen depletion within the sediments/bottom waters in comparison to the upper water column is achieved by comparing normalised concentrations of redox-sensitive trace elements with the abundance of highly source specific molecular compounds. These biomarkers are derived from photoautotrophic and simultaneously anoxygenic green sulphur bacteria (Chlorobiacea) and are interpreted as paleoindicators for events of photic zone euxinia. In contrast to a number of other OAE 2 sections that are characterised by continuous black shale sequences, DSDP Site 530A represents a highly dynamic setting where newly deposited black shales were repeatedly exposed to conditions of subtle bottom water re-oxidation, presumably leading to their progressive alteration into green shales. The frequent alternation between both facies and the related anoxic to slight oxygenated conditions can be best explained by variations in vertical extent of an oxygen minimum zone in response to changes in a highly productive western continental margin setting driven by upwelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A primary objective of Leg 175 was to investigate the upwelling history of the Benguela Current. Upwelling along the coast is found over the shelf in several well-established cells, as well as along the shelf-slope break, and extends over the 1000-m isobath. Streaming filaments along the coast also carry upwelled water off shore (Shannon, 1985). The upwelled nutrient-rich waters are sourced from the South Atlantic central water mass, which is a mixture of subtropical and subantarctic water masses. Below the central water mass lies Antarctic intermediate water (Shannon and Hunter, 1988, doi:10.2989/025776188784480735; Stramma and Peterson, 1989, doi:10.1175/1520-0485(1989)019<1440:GTITBC>2.0.CO;2). The upwelling system supports a robust marine community (Shannon and Pillar, 1986) where radiolarians are abundant (Bishop et al., 1978, doi:10.1016/0146-6291(78)90010-3). The endemic nature of radiolarians makes them useful in reconstructing the paleocirculation patterns. The biogeographic distribution of many species is limited by water-mass distribution. In a given geographic region, species may also have discrete depth habitats. However, their depth of occurrence can change worldwide because the depths of water masses vary with latitude (Boltovskoy, 1999). Consequently, species found at shallow depths at high latitudes (cold-water fauna) are observed deeper in the water column at lower latitudes. The low-latitude submergence of cold-water species broadens their distribution, resulting in species distributions that can cover multiple geographic regions (Kling, 1976, doi:10.1016/0011-7471(76)90880-9; Casey, doi:10.1016/0031-0182(89)90017-5; 1971; Boltovskoy, 1987, doi:10.1016/0377-8398(87)90014-4). Since radiolarian distribution is closely related to water-mass distribution and controlled by climatic conditions rather than geographic regions, similar assemblages characterize the equatorial, subtropical, transition, subpolar, and polar regions of ocean basins (Petrushevskaya, 1971a; Casey, 1989, doi:10.1016/0031-0182(89)90017-5; Boltovskoy, 1999). Numerous radiolarian species found in water masses in the Angola and Benguela Current systems have also been observed in plankton net samples, sediment traps, and surface-sediment studies in the Atlantic sector of the Southern Ocean, where they exhibited particular water-mass affinities (Abelmann, 1992a, doi:10.1007/BF00243107; Abelmann 1992b, doi:10.1007/BF00243108; Abelmann and Gowing, 1997, doi:10.1016/S0377-8398(96)00021-7). This report presents data on the radiolarian fauna recovered from Site 1082 sediments in the form of a survey of species reflecting the latitudinal migration of the Angola-Benguela Front and upwelling. The data constitute a time series of relative radiolarian abundances at very high resolution (every 20 cm) of the upper 12 m of Hole 1082A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is part 2 of a study examining southwest African continental margin sediments from nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) representing two glacial (MIS 2 and 6a) and two interglacial stages (MIS 1 and 5e). Contents, distribution patterns, and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) as indicators of land plant vegetation of different biosynthetic types were correlated with concentrations and distributions of pollen taxa in sediments of the same time horizons. Selected single pollen type data reveal details of vegetation changes, but the overall picture is best illustrated by summing pollen known to predominantly derive from C4 plants or C4 plus CAM plants. The C4 plant signals in the biomarkers are recorded in the delta13C data and in the abundances of C31 and C33 n-alkanes, and the C32 n-alkanol. Calculated clusters of wind trajectories for austral summer and winter situations for the Holocene and the Last Glacial Maximum afford information on the source areas for the lipids and pollen and their transport pathways to the ocean. This multidisciplinary approach provides clear evidence of latitudinal differences in leaf wax lipid and pollen composition, with the Holocene sedimentary data paralleling the current major phytogeographic zonations. The northern sites (Congo Fan area and northern Angola Basin) get most of their terrestrial material from the Congo Basin and the Angolan highlands dominated by C3 plants. Airborne particulates derived from the western and central South African hinterland dominated by deserts, semideserts, and savannah regions are rich in organic matter from C4 plants. As can be expected from the present and glacial positions of the phytogeographic zones, the carbon isotopic signatures of n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. In the northern part of the transect the relative importance of C4 plant indicators is higher during the glacials than in the interglacials, indicating a northward extension of arid zones favoring grass vegetation. In the south, where grass-rich vegetation merges into semidesert and desert, the difference in C4 plant indicators is small.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to reconstruct Late Quatemary variations of surface oceanography in the eastequatorial South Atlantic, time series of sea-surface temperatures (SST) and paleoproductivity were established from cores recovered in the Guinea and Angola Basins, and at the Walvis Ridge. These records, based on sedimentary alkenone and organic carbon concentrations, reveal that during the last 350,000 years surface circulation and productivity changes in the east-equatorial South Atlantic were highiy sensitive to climate forcing at 23- and 100-kyr periodicities. Covarying SST and paleoproductivity changes at the equator and at the Walvis Ridge appear to be driven by variations in zonal trade-wind intensity, which forces intensification or reduction of coastal and equatorial upwelling, as well as enhanced Benguela cold water advection from the South. Phase relationships of precessional variations in the paleoproductivity and SST records from the distinct sites were evaluated with respect to boreal summer insolation over Africa, movements of southem ocean thermal fronts, and changes in global ice volume. The 23-kyr phasing implies a sensitivity of eastem South Atlantic surface water advection and upwelling to West African monsoon intensity and to changes in the position ofthe subtropical high pressure cell over the South Atlantic, both phenomena which modulate zonal strength of southeasterly trades. SST and productivity changes north of 20°S lack significant variance at the 41-kyr periodicity; and at the Walvis Ridge and the equator lead changes in ice volume. This may indicate that obliquity-driven clirnate change, characteristic for northem high latitudes, e.g fluctuations in continental ice masses, did not substantially influence subtropical and tropical surface circulation in the South Atlantic. At the 23-kyr cycle SST and productivity changes in the eastern Angola Basin lag those in the equatorial Atlantic and at the Walvis Ridge by about 3500 years. This lag is explained by variations in cross-equatorial surface water transport and west-east countercurrent retum flow modifying precessional variations of SST and productivity in the eastem Angola Basin relative to those in the mid South Atlantic area under the central field of zonal trade winds. Sea level-related shifts of upwelling cells in phase with global clirnate change may be also recorded in SST and productivity variability along the continental margin off Southwest Africa. They may account for the delay of the paleoceanogreaphic signal from continental margin sites with respect to that from the pelagic sites at the equator and the Walvis Ridge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some samples from DSDP Holes 530A and 532 were analyzed for their fossil pollen content. The sites are located in the southeastern corner of the Angola Basin, about 200 km west of the present coastline. Fossil pollen assemblages of Holocene to Miocene age were compared with present-day pollen deposition in the arid Namib sand sea. The strong resemblance of all the pollen spectra indicates that very arid conditions existed in the coastal region of Namibia in Quaternary and Pliocene times. These data are in agreement with the late Miocene origin of the coastal aridity and with the conception that upwelling of cold water was responsible for these desert conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of C2-C8 hydrocarbons (including saturated, aromatic, and olefinic compounds) from deep-frozen core samples taken during DSDP Leg 75 (Holes 530A and 532) were analyzed by a combined hydrogen-stripping/thermovaporization method. Concentrations representing both hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces vary in Hole 530A from about 10 to 15,000 ng/g of dry sediment weight depending on the lithology (organic-carbon-lean calcareous oozes versus "black shales"). Likewise, the organic-carbon-normalized C2-C8 hydrocarbon concentrations vary from 3,500 to 93,100 ng/g Corg, reflecting drastic differences in the hydrogen contents and hence the hydrocarbon potential of the kerogens. The highest concentrations measured of nearly 10**5 ng/g Corg are about two orders of magnitude below those usually encountered in Type-II kerogen-bearing source beds in the main phase of petroleum generation. Therefore, it was concluded that Hole 530A sediments, even at 1100 m depth, are in an early stage of evolution. The corresponding data from Hole 532 indicated lower amounts (3,000-9,000 ng/g Corg), which is in accordance with the shallow burial depth and immaturity of these Pliocene/late Miocene sediments. Significant changes in the light hydrocarbon composition with depth were attributed either to changes in kerogen type or to maturity related effects. Redistribution pheonomena, possibly the result of diffusion, were recognized only sporadically in Hole 530A, where several organic-carbon lean samples were enriched by migrated gaseous hydrocarbons. The core samples from Hole 530A were found to be severely contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures on board Glomar Challenger.