124 resultados para Amino-acid-composition
Resumo:
The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, d13CTOC, d15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18-17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.
Resumo:
The accelerating decrease of Arctic sea ice substantially changes the growth conditions for primary producers, particularly with respect to light. This affects the biochemical composition of sea ice algae, which are an essential high-quality food source for herbivores early in the season. Their high nutritional value is related to their content of polyunsaturated fatty acids (PUFAs), which play an important role for successful maturation, egg production, hatching and nauplii development in grazers. We followed the fatty acid composition of an assemblage of sea ice algae in a high Arctic fjord during spring from the early bloom stage to post bloom. Light conditions proved to be decisive in determining the nutritional quality of sea ice algae, and irradiance was negatively correlated with the relative amount of PUFAs. Algal PUFA content decreased on average by 40 % from April to June, while algal biomass (measured as particulate carbon, C) did not differ. This decrease was even more pronounced when algae were exposed to higher irradiances due to reduced snow cover. The ratio of chlorophyll a (chl a) to C, as well as the level of photoprotective pigments, confirmed a physiological adaptation to higher light levels in algae of poorer nutritional quality. We conclude that high irradiances are detrimental to sea ice algal food quality, and that the biochemical composition of sea ice algae is strongly dependent on growth conditions.
Resumo:
Temora longicornis, a dominant calanoid copepod species in the North Sea, is characterised by low lipid reserves and high biomass turnover rates. To survive and reproduce successfully, this species needs continuous food supply and thus requires a highly flexible digestive system to exploit various food sources. Information on the capacity of digestive enzymes is scarce and therefore the aim of our study was to investigate the enzymatic capability to respond to quickly changing nutritional conditions. We conducted two feeding experiments with female T. longicornis from the southern North Sea off Helgoland. In the first experiment in 2005, we tested how digestive enzyme activities and enzyme patterns as revealed by substrate SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) responded to changes in food composition. Females were incubated for three days fed ad libitum with either the heterotrophic dinoflagellate Oxyrrhis marina or the diatom Thalassiosira weissflogii. At the beginning and at the end of the experiment, copepods were deep-frozen for analyses. The lipolytic enzyme activity did not change over the course of the experiment but the enzyme patterns did, indicating a distinct diet-induced response. In a second experiment in 2008, we therefore focused on the enzyme patterns, testing how fast changes occur and whether feeding on the same algal species leads to similar patterns. In this experiment, we kept the females for 4 days at surplus food while changing the algal food species daily. At day 1, copepods were offered O. marina. On day 2, females received the cryptophycean Rhodomonas baltica followed by T. weissflogii on day 3. On day 4 copepods were again fed with O. marina. Each day, copepods were frozen for analysis by means of substrate SDS-PAGE. This showed that within 24 h new digestive enzymes appeared on the electrophoresis gels while others disappeared with the introduction of a new food species, and that the patterns were similar on day 1 and 4, when females were fed with O. marina. In addition, we monitored the fatty acid compositions of the copepods, and this indicated that specific algal fatty acids were quickly incorporated. With such short time lags between substrate availability and enzyme response, T. longicornis can successfully exploit short-term food sources and is thus well adapted to changes in food availability, as they often occur in its natural environment due seasonal variations in phyto- and microzooplankton distribution.
Resumo:
A field study was conducted in Santala Bay with weekly samplings during February and March 2000. Ice thickness was 20-28 cm, snow cover 0-1 cm. The under-ice water column was stratified with a cold (-0.3 - 0.2°C) and less saline (S = 2.1-4.9) interface layer. Concentrations of particulate organic carbon (0.5-5.8 mg POC/l) and algal pigments (0.3-18.2 µg chlorophyll a/l) were higher in the ice than in the water (0.2-0.5 mg POC/l, 1.6-7.1 µg chlorophyll a/l) and peaked mostly in the bottom part of the ice. The thin ice and almost lacking snow cover had favoured an early ice-algal and phytoplankton bloom. The diversity of metazoans was low, with six species in the ice and eight species in the under-ice water. The rotifer Synchaeta cf. littoralis dominated both in ice and water, with maximum abundances of 230 individuals/l in the bottom part of the ice. Rotifer eggs were also observed in the ice. Baltic sea ice seems to be a suitable habitat for rotifers. Nauplii and copepodids of the calanoid Acartia longiremis in the under-ice water showed some herbivorous feeding (<0.1-0.23 ng gut pigment/individual), but analysis of fatty acids, fatty alcohols and biomarker ratios indicated a more omnivorous/carnivorous diet. Despite low temperatures, this copepod showed growth and development below the ice, doubling in numbers (mainly CI, CII) from 118 to 230 individuals m during the third week of March.
Resumo:
Marine birds are important predators in the marine ecosystem, and dietary studies can give useful information about their feeding ecology, food webs and oceanographic variability. The aim of this study was to increase our understanding of the diet and trophic level of the seabirds breeding in Kongsfjorden, Svalbard. We have used fatty acids and stable isotopes, both of which integrate diet information over space and time, to determine trophic relationships in marine food webs. Fatty acid compositions of muscle from Little auk (Alle alle), Brünnich's guillemot (Uria lomvia), Black-legged kittiwake (Rissa tridactyla), Northern fulmar (Fulmarus glacialis) and Glaucous gull (Larus hyperboreus) were determined and compared with their prey species. Canonical analysis (CA) showed that fatty acid composition differed among the five seabird species. Little auk, Black-legged kittiwake and Northern fulmar had high levels of the Calanus markers 20:1n9 and 22:1, indicating that these seabirds are a part of the Calanus food chain. Brünnich's guillemot differed from the other species with much lower levels of 20:1n9 and 22:1. Brünnich's guillemot is a pursuit diver feeding on fish and amphipods deeper in the water column, below 30 m. Glaucous gull also differed from the other seabird species, with a larger variation in the fatty acid composition indicating a more diverse diet. Trophic level analysis placed Little auk at the lowest trophic level, Brünnich's guillemot and Black-legged kittiwake at intermediate levels and Glaucous gull and Northern fulmar at the highest trophic level.
Resumo:
In this study, we demonstrate the utility of amino acid geochronology based on single-foraminiferal tests in Quaternary sediment cores from the Queensland margin, Australia. The large planktonic foraminifer Pulleniatina obliquiloculata is ubiquitous in shelf, slope, and basin sediments of north Queensland as well as pantropical oceans. Fossil tests are resistant to dissolution, and retain substantial concentrations of amino acids (2-4 nmol/mg of shell) over hundreds of thousands of years. Amino acid D and L isomers of aspartic acid (Asp) and glutamic acid (Glu) were separated using reverse phase chromatography, which is sensitive enough to analyze individual foraminifera tests. In all, 462 Pulleniatina tests from 80 horizons in 11 cores exhibit a systematic increase in D/L ratios down core. D/L ratios were determined in 32 samples whose ages are known from AMS 14C analyses. In all cases, the Asp and Glu D/L ratios are concordant with 14C age. D/L ratios of equal-age samples are slightly lower for cores taken from deeper water sites, reflecting the sensitivity of the rate of racemization to bottom water temperature. Beyond the range of 14C dating, previously identified marine oxygen-isotope stage boundaries provide approximate ages of the sediments up to about 500,000 years. For this longer time frame, D/L ratios also vary systematically with isotope-correlated ages. The rate of racemization for Glu and Asp was modeled using power functions. These equations can be used to estimate ages of samples from the Queensland margin extending back at least 500,000 years. This analytical approach provides new opportunities for geochronological control necessary to understand fundamental sedimentary processes affecting a wide range of marine environments.
Resumo:
The long-term rate of racemization for amino acids preserved in planktonic foraminifera was determined by using independently dated sediment cores from the Arctic Ocean. The racemization rates for aspartic acid (Asp) and glutamic acid (Glu) in the common taxon, Neogloboquadrina pachyderma, were calibrated for the last 150 ka using 14C ages and the emerging Quaternary chronostratigraphy of Arctic Ocean sediments. An analysis of errors indicates realistic age uncertainties of about ±12% for Asp and ±17% for Glu. Fifty individual tests are sufficient to analyze multiple subsamples, identify outliers, and derive robust sample mean values. The new age equation can be applied to verify and refine age models for sediment cores elsewhere in the Arctic Ocean, a critical region for understanding the dynamics of global climate change.