202 resultados para Amino acid, total hydrolysable


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biogeochemical measurements in sediment cores collected with the submersible JAGO (pusch cores) and a TV-MUC in the Black Sea during MSM15/1, Northwest Crimea (HYPOX Project), at water depths between 152-156 m. A series of microbial mats were sampled on the hypoxic region of the Crimean Shelf. Concentrations of organic carbon (Corg) and nitrogen (N) were measured on finely powdered, freeze-dried subsamples of sediment using a using a Fisons NA-1500 elemental analyzer. For organic carbon determination samples were pre-treated with 12.5% HCl to remove carbonates. Chlorophyll a (chl a), phaeopigments (PHAEO) and chloroplastic pigment equivalents (CPE) was measured according to Schubert et al., (2005) and total hydrolyzable amino acids (THAA) and single amino acid: ASP, GLU, SER, HIS, GLY, THR, ARG, ALA, TYR, MET, VAL, PHE, ILE, LEU, LYS following Dauwe et al., 1998. High-resolution ex situ sulfide and pH microprofiles, were assessed only for station MSM15/1_492_PUC1. "in mat 1, 2 and 3" refers to 3 different profiles in 3 different spots of the microbial mat, whereas "outside mat", a profile outside the microbial mat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biogeochemical measurements in sediment cores collected with the submersible JAGO (pusch cores) and a TV-MUC in the Black Sea during MSM15/1, Northwest Crimea (HYPOX Project), at water depths between 152-156 m. A series of microbial mats were sampled on the hypoxic region of the Crimean Shelf. Concentrations of organic carbon (Corg) and nitrogen (N) were measured on finely powdered, freeze-dried subsamples of sediment using a using a Fisons NA-1500 elemental analyzer. For organic carbon determination samples were pre-treated with 12.5% HCl to remove carbonates. Chlorophyll a (chl a), phaeopigments (PHAEO) and chloroplastic pigment equivalents (CPE) was measured according to Schubert et al., (2005) and total hydrolyzable amino acids (THAA) and single amino acid: ASP, GLU, SER, HIS, GLY, THR, ARG, ALA, TYR, MET, VAL, PHE, ILE, LEU, LYS following Dauwe et al., 1998.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sea-surface microlayer (SML) is the ocean's uppermost boundary to the atmosphere and in control of climate relevant processes like gas exchange and emission of marine primary organic aerosols (POA). The SML represents a complex surface film including organic components like polysaccharides, pro- teins, and marine gel particles, and harbors diverse microbial communities. Despite the potential relevance of the SML in ocean-atmosphere interactions, still little is known about its structural characteristics and sen- sitivity to a changing environment such as increased oceanic uptake of anthropogenic CO2. Here we report results of a large-scale mesocosm study, indicating that ocean acidification can affect the abundance and activity of microorganisms during phytoplankton blooms, resulting in changes in composition and dynam- ics of organic matter in the SML. Our results reveal a potential coupling between anthropogenic CO2 emis- sions and the biogenic properties of the SML, pointing to a hitherto disregarded feedback process between ocean and atmosphere under climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed to explore evaluated the effects of the increased of hydrostatic pressure on a defined bacterial community on aggregates formed from an axenic culture of marine diatoms by simulating sedimentation to the deep sea by increase of hydrostatic pressure up to 30 bar (equivalent to 3000 m water depth) against control at ambient surface pressure. Our hypothesis was that microbial colonization and community composition and thus microbial OM turnover is greatly affected by changes in hydrostatic pressure during sinking to the deep ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fine-scale depth distribution of major carbon pools and their stable carbon isotopic signatures (d13C) were determined in a cyanobacterial mat (Salin-de-Giraud, Camargue, France) to study early diagenetic alterations and the carbon preservation potential in hypersaline mat ecosystems. Particular emphasis was placed on the geochemical role of extracellular polymeric substances (EPS). Total carbon (Ctot), organic carbon (Corg), total nitrogen (Ntot), total hydrolysable amino acids (THAA), carbohydrates, cyanobacteria-derived hydrocarbons (8-methylhexadecane, n-heptadec-5-ene, n-heptadecane) and EPS showed highest concentrations in the top millimetre of the mat and decreased with depth. The hydrocarbons attributed to cyanobacteria showed the strongest decrease in concentration with depth. This correlated well with the depth profiles of oxygenic photosynthesis and oxygen, which were detected in the top 0.6 and 1.05 mm, respectively, at a high down-welling irradiance (1441 µmol photons m**-2 s**-1). At depths beneath the surface layer, the Corg was composed mainly of amino acids and carbohydrates. A resistance towards microbial degradation could have resulted from interactions with diverse functional groups present in biopolymers (EPS) and with minerals deposited in the mat. A 13C enrichment with depth for the total carbon pool (Ctot) was observed, with d13C values ranging from -16.3 permil at the surface to -11.3 permil at 9-10 mm depth. Total lipids depicted a d13C value of -17.2 permil in the top millimetre and then became depleted in 13C with depth (-21.7 to -23.3 permil). The d13C value of EPS varied only slightly with depth (-16.1 to -17.3 permil) and closely followed the d13C value of Corg at depths beneath 4 mm. The EPS represents an organic carbon pool of preservation potential during early stages of diagenesis in recent cyanobacterial mats as a result of a variety of possible interactions. Their analyses might improve our understanding of fossilized microbial remains from mat ecosystems.