195 resultados para Age and employment.
Resumo:
Firm stratigraphic correlations are needed to evaluate the global significance of unconformity bounded units (sequences). We correlate the well-developed uppermost Campanian and Maestrichtian sequences of the New Jersey Coastal Plain to the geomagnetic polarity time scale (GPTS) by integrating Sr-isotopic stratigraphy and biostratigraphy. To do this, we developed a Maestrichtian (ca. 73-65 Ma) Sr-isotopic reference section at Deep Sea Drilling Project Hole 525A in the southeastern Atlantic Ocean. Maestrichtian strata can then be dated by measuring their 87Sr/86Sr composition, calibrating to the GPTS of S. C. Cande and D. V. Kent (1993, personal commun.), and using the equation Age (Ma) = 37326.894-52639.89 (87Sr/86Sr). Sr-stratigraphic resolution for the Maestrichtian is estimated as +-1.2 to +-2 m.y. At least two unconformity-bounded units comprise the uppermost Campanian to Maestrichtian strata in New Jersey. The lower one, the Marshalltown sequence, is assigned to calcareous nannofossil Zones CC20/21 (~NC19) and CC22b (~NC20). It ranges in age from ~74.1 to 69.9 Ma based on Sr-isotope age estimates. The overlying Navesink sequence is assigned to calcareous nannoplankton Zones CC25-26 (~NC21-23); it ranges in age from 69.3 to 65 Ma based on Sr-isotope age estimates. The upper part of this sequence, the Tinton Formation, has no calcareous planktonic control; Sr-isotopes provide an age estimate of 66 +- 1.2 Ma (latest Maestrichtian). Sequence boundaries at the base and the top of the Marshalltown sequence match boundaries elsewhere in the Atlantic Coastal Plain (Owens and Gohn, 1985) and the inferred global sea-level record of Haq et al. (1987); they support eustatic changes as the mechanism controlling depositional history of this sequence. However, the latest Maestrichtian record in New Jersey does not agree with Haq et al. (1987); we attribute this to correlation and time-scale differences near the Cretaceous/Paleogene boundary. High sedimentation rates in the latest Maestrichtian of New Jersey (Shrewsbury Member of the Red Bank Formation and the Tinton Formation) suggest tectonic uplift and/or rapid progradation during deposition of the highstand systems tract.
Resumo:
Densities of layer 2 basalt recovered during the Deep Sea Drilling Project have been found to decrease steadily with age, a finding ascribed to progressive submarine weathering in the context of sea-floor spreading. The least-squares solution for 52 density measurements gives a rate of decrease in density of (Delta p)/(Delta t) = -0.0046 g per ccm m.y. = -16 percent per 100 m.y., which is in excellent agreement with earlier estimates based on observed chemical depletion rates of dredged oceanic basalt. Weathering of sea-floor basalt, should it penetrate to any considerable depth in layer 2, will decrease layer 2 seismic refraction velocities, act as a source of geothermal heat, and substantially influence the chemistry of sea water and the overlying column of sediment.
Resumo:
A combined study of magnetic parameters of basalt and andesite samples has been carried out in the framework of geological investigations of the Franz Josef Land. This study has included determination of coercivity, saturation magnetization, Curie points, natural remanent magnetization (NRM), and magnetic susceptibility as well as examination of ferromagnetic minerals with a microscope. Data on chemical composition of the rocks have been obtained for all the samples, and radiological ages have been determined for the majority of the rocks. Thermomagnetic curves of the samples have been subdivided into four types depending on composition of ferromagnetic NRM carriers. Data showing multiple changes in the predominant composition of the igneous rocks have been obtained. Each stage of magmatism is characterized by a specific type of the ferromagnetic component in the rocks and, therefore, magnetomineralogical investigations can be used for differentiation and correlation of the igneous rocks.
Resumo:
Volcanogenic rocks from the Sea of Okhotsk are divided into seven age complexes: Late Jurassic, Early Cretaceous, Late Cretaceous, Eocene, Late Oligocene, Late Miocene, and Pliocene-Pleistocene. All these complexes are united into two groups - Late Mesozoic and Cenozoic. Each group reflects a certain stage of development of the Sea of Okhotsk region. Late Mesozoic volcanites build the geological basement of the Sea of Okhotsk, and their petrochemical features are similar to those of the volcanic rocks from the Okhotsk-Chukotka Volcanogen. Pliocene-Pleistocene volcanites reflect stages of tectono-magmatic activity; the latter destroyed the continental margin and produced riftogenic troughs. Geochemical features of volcanites from the Sea of Okhotsk indicate influence of the sialic crust on magma formation and testify formation of the Okhotsk Sea Basin on the destructive margin of the Asian continent.
Resumo:
Instrumental monitoring of the climate at high northern latitudes has documented the ongoing warming of the last few decades. Climate modelling has also demonstrated that the global warming signal will be amplified in the polar region. Such temperature increases would have important implications on the ecosystem and biota of the Barents Sea. This study therefore aims to reconstruct the climatic changes of the Barents Sea based on benthic foraminifera over approximately the last 1400 years at the decadal to sub-decadal scale. Oxygen and carbon isotope analysis and benthic foraminiferal species counts indicate an overall warming trend of approximately 2.6°C through the 1400-year record. In addition, the well-documented cooling period equating to the 'Little Ice Age' is evident between c. 1650 and 1850. Most notably, a series of highly fluctuating temperatures are observed over the last century. An increase of 1.5°C is shown across this period. Thus for the first time we are able to demonstrate that the recent Arctic warming is also reflected in the oceanic micro-fauna.
Resumo:
Complex geological-geochemical studies of water column and bottom sediments were carried out during Cruise 49 of R/V "Dmitry Mendeleev" in the Kara Sea shelf zone along the Obskaya Guba (Ob River estuary) from the Pur River and Taz River mouths to 76°N. Carbon-14 concentrations in organic matter from bottom sediments were determined at 5 stations. Constant initial 14C concentration model was used to determine sedimentation rates that were taken as a basis for calculating ages of sediment cores and their separate parts and for inferring location of a depocenter, i.e. a region of maximal discharge of fine-dispersed fraction of suspended matter of river run-off. Sedimentation rate in the depocenter is 170 cm/ka. Southward moves of the depocenter were recorded for periods of sea-level rises 2 and 5 thousand years ago. Bottom sediments in the depocenter contain 45% of organic matter primary produced in the Obskaya Guba. This organic matter is an energetic basis for bottom fauna life. About 55% of organic matter comes with river run-off.
Resumo:
The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.
Resumo:
A numerical model which describes oxygen isotope exchange during burial and recrystallization of deep-sea carbonate is used to obtain information on how sea surface temperatures have varied in the past by correcting measured d18O values of bulk carbonate for diagenetic overprinting. Comparison of bulk carbonate and planktonic foraminiferal d18O records from ODP site 677A indicates that the oxygen isotopic composition of bulk carbonate does reflect changes in sea surface temperature and d18O. At ODP Site 690, we calculate that diagenetic effects are small, and that both bulk carbonate and planktonic foraminiferal d18O records accurately reflect Paleogene warming of high latitude surface oceans, biased from diagenesis by no more than 1°C. The same is likely to be true for other high latitude sites where sedimentation rates are low. At DSDP sites 516 and 525, the effects of diagenesis are more significant. Measured d18O values of Eocene bulk carbonates are more than 2? lower at deeply buried site 516 than at site 525, consistent with the model prediction that the effects of diagenesis should be proportional to sedimentation rate. Model-corrections reconcile the differences in the data between the two sites; the resulting paleotemperature reconstruction indicates a 4°C cooling of mid-latitude surface oceans since the Eocene. At low latitudes, the contrast in temperature between the ocean surface and bottom makes the carbonate d180 values particularly sensitive to diagenetic effects; most of the observed variations in measured d18O values are accounted for by diagenetic effects rather than by sea surface temperature variations. We show that the data are consistent with constant equatorial sea surface temperatures through most of the Cenozoic, with the possible exception of the early Eocene, when slightly higher temperatures are indicated. We suggest that the lower equatorial sea surface temperatures for the Eocene and Oligocene reported in other oxygen isotope studies are artifacts of diagenetic recrystallization, and that it is impossible to reconstruct accurately equatorial sea surface temperatures without explicitly accounting for diagenetic overprinting.