55 resultados para Activated carbon structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diatoms can occur as single cells or as chain-forming aggregates. These two strategies affect buoyancy, predator evasion, light absorption and nutrient uptake. Adjacent cells in chains establish connections through various processes that determine strength and flexibility of the bonds, and at distinct cellular locations defining colony structure. Chain length has been found to vary with temperature and nutrient availability as well as being positively correlated with growth rate. However, the potential effect of enhanced carbon dioxide (CO2) concentrations and consequent changes in seawater carbonate chemistry on chain formation is virtually unknown. Here we report on experiments with semi-continuous cultures of the freshly isolated diatom Asterionellopsis glacialis grown under increasing CO2 levels ranging from 320 to 3400 µatm. We show that the number of cells comprising a chain, and therefore chain length, increases with rising CO2 concentrations. We also demonstrate that while cell division rate changes with CO2 concentrations, carbon, nitrogen and phosphorus cellular quotas vary proportionally, evident by unchanged organic matter ratios. Finally, beyond the optimum CO2 concentration for growth, carbon allocation changes from cellular storage to increased exudation of dissolved organic carbon. The observed structural adjustment in colony size could enable growth at high CO2 levels, since longer, spiral-shaped chains are likely to create microclimates with higher pH during the light period. Moreover increased chain length of Asterionellopsis glacialis may influence buoyancy and, consequently, affect competitive fitness as well as sinking rates. This would potentially impact the delicate balance between the microbial loop and export of organic matter, with consequences for atmospheric carbon dioxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the intermediate water structure of the North Atlantic were reconstructed using benthic foraminiferal delta13C at Ocean Drilling Program (ODP) site 982 for the past 1.0 Myr. During most terminations of the late Pleistocene, melting of icebergs and low-salinity surface waters caused production of Glacial North Atlantic Intermediate Water to cease, resulting in decreased ventilation of the middepth North Atlantic. Poor ventilation of intermediate water masses lasted well into some interglacial stages until upper North Atlantic Deep Water (NADW) production resumed under full interglacial conditions. The magnitude of benthic delta13C minima and ice-rafted debris maxima at terminations at site 982 generally match the degree of glacial suppression of NADW inferred from site 607. These processes may be related and controlled by the spatial and seasonal extent of sea ice cover during glaciations in the Nordic Seas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of amino acids in the Precambrian shungite rocks of Karelia showed that their contents vary within 25-89 µg/g depending on proportions between shungite and mineral components. It was established that the amino acids exhibit an excess of L-enantiomers. In the shungite rocks, they form organomineral complexes with silica and aluminosilicates, being built in the globular structure of shungite matter. There are several sources of amino acids in shungites: secondary synthesis, microbial pollution, and original amino acids of organic matter in shungite rocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two global environmental issues, climate change and contamination by persistent organic pollutants, represent major concerns for arctic ecosystems. Yet, it is unclear how these two stressors interact in the Arctic. For instance, the influence of climate-associated changes in food web structure on exposure to pollutants within arctic ecosystems is presently unknown. Here, we report on recent changes in feeding ecology (1991-2007) in polar bears (Ursus maritimus) from the western Hudson Bay subpopulation that have resulted in increases in the tissue concentrations of several chlorinated and brominated contaminants. Differences in timing of the annual sea ice breakup explained a significant proportion of the diet variation among years. As expected from climate change predictions, this diet change was consistent with an increase in the consumed proportions of open water-associated seal species compared to ice-associated seal species in years of earlier sea ice breakup. Our results demonstrate that climate change is a modulating influence on contaminants in this polar bear subpopulation and may pose an additional and previously unidentified threat to northern ecosystems through altered exposures to contaminants.