290 resultados para Absolute Fluorescent


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal changes in the zooplankton composition of the glacially influenced Kongsfjorden, Svalbard (79°N, 12°E), and its adjacent shelf were studied in 2002. Samples were collected in the spring, summer and autumn in stratified hauls (according to hydrographic characteristics), by means of a 0.180-mm Multi Plankton Sampler. A strong front between the open sea and the fjord waters was observed during the spring, preventing water mass exchange, but was not observed later in the season. The considerable seasonal changes in zooplankton abundance were related to the seasonal variation in hydrographical regime. The total zooplankton abundance during the spring (40-2010 individuals/m**3) was much lower than in the summer and autumn (410-10,560 individuals/m**3). The main factors shaping the zooplankton community in the fjord include: the presence of a local front, advection, the flow pattern and the decreasing depth of the basin in the inner fjord. Presumably these factors regulate the gross pattern of zooplankton density and distribution, and override the importance of biological processes. This study increased our understanding of seasonal processes in fjords, particularly with regard to the strong seasonal variability in the Arctic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic mass accumulation rates have been calculated for ODP Site 707 using depth-density and depth-porosity functions to estimate values for these parameters with increasing sediment thickness, at 1 Ma time intervals determined on the basis of published microfossil datums. These datums were the basis of the age model used by Peterson and Backman (1990, doi:10.2973/odp.proc.sr.115.163.1990) to calculate actual mass accumulation rate data using density and porosity measurements. A comparison is made between the synthetic and actual mass accumulation rate values for the time interval 37 Ma to the Recent for 1 Myr time intervals. There is a correlation coefficient of 0.993 between the two data sets, with an absolute difference generally less than 0.1 g/cm**2/kyr. We have used the method to extend the mass accumulation rate analysis back to the Late Paleocene (60 Ma) for Site 707. Providing age datums (e.g. fossil or magnetic anomaly data) are available the generation of synthetic mass accumulation rates can be calculated for any sediment sequence.