40 resultados para 986.1063
Resumo:
The Global River Discharge (RivDIS) data set contains monthly discharge measurements for 1018 stations located throughout the world. The period of record varies widely from station to station, with a mean of 21.5 years. These data were digitized from published UNESCO archives by Charles Voromarty, Balaze Fekete, and B.A. Tucker of the Complex Systems Research Center (CSRC) at the University of New Hampshire. River discharge is typically measured through the use of a rating curve that relates local water level height to discharge. This rating curve is used to estimate discharge from the observed water level. The rating curves are periodically rechecked and recalibrated through on-site measurement of discharge and river stage.
Resumo:
Ocean circulation may have undergone reductions and reinvigorations in the past closely tied to regional climate changes. Measurements of 231Pa/230Th ratios in a sediment core from the Bermuda Rise have been interpreted as evidence that the Atlantic Meridional Overturning Circulation (AMOC) was weakened or completely eliminated during a period of catastrophic iceberg discharges (Heinrich-Event 1, H1). Here we present new data from the Bermuda Rise that show further 231Pa/230Th peaks during Heinrich-2 (H2) and Heinrich-3 (H3). Additionally, a tight correlation between diatom abundances (biogenic silica) and 231Pa/230Th is discovered in this core. Our results redirect the interpretation of 231Pa/230Th from the Bermuda Rise as a proxy for ocean circulation towards a proxy that reacts highly sensitive to changes of particle composition and water mass properties.
Resumo:
Cores recovered at Sites 986 and 987 comprise glacial fan sedimentation associated with the Svalbard-Barents Sea and Greenland Ice Sheets, respectively. At Site 986, the top 150 m and the basal 250 m yielded interpretable magnetic stratigraphies. The record from the intervening 550 m is compromised by drilling-related core deformation, poor recovery, and numerous debris flows. The uppermost 150 m appears to record the Brunhes/Matuyama boundary and the Jaramillo Subchron. The base of the drilled section (at ~950 meters below seafloor [mbsf]) is interpreted to lie within the Matuyama Chron (age <2.58 Ma) with an apparent normal polarity interval in the ~730-750 mbsf interval. Dinoflagellate cyst biostratigraphy and Sr isotopic ratios are consistent with a Matuyama age for the base of the drilled section and with the normal polarity interval as the Olduvai Subchron. On the other hand, the last occurrence of Neogloboquadrina atlantica (sinistral) and the last common occurrence of the warm-dwelling Globigerina bulloides at 647-650 mbsf in Hole 986D indicate an age for this level of ~2.3 Ma, inconsistent with the designation of the Olduvai Subchron in the ~730-750 mbsf interval. If the age at 647-650 mbsf in Hole 986D is taken as 2.3 Ma and the base of the hole lies within the Matuyama Chron, then the sedimentation rate in the basal 300 m of the cored section averages 1 m/k.y. At Site 987, the magnetic stratigraphy is fairly unambiguous throughout the section and yields an age of 7.5 Ma (Chron 4n) for the base of the drilled section. The paucity of calcareous and siliceous microfossils precludes biostratigraphic corroboration of the magnetostratigraphic interpretation, although dinoflagellate cysts provide general support, particularly at the base of the section. The age model indicates relatively low sedimentation rates (~5 cm/k.y.) at the base of the section with rates at least four to five times greater during intervals of debris flows at ~5-4.6 and ~2.6 Ma.
Resumo:
The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in the Northern Hemisphere climate system. Significant interest went into the question of how excessive freshwater input through melting of continental ice can affect its overturning vigor and, hence, heat supply, to higher northern latitudes. Such forcing can be tested by investigating its behavior during extreme iceberg discharge events into the open North Atlantic during the last glacial period, the so-called Heinrich events (HE). Here we present neodymium (Nd) isotope compositions of past seawater, a sensitive chemical water mass tag, extracted from sediments of Ocean Drilling Program Site 1063 in the western North Atlantic (Bermuda Rise), covering the period surrounding HE 2, the Last Glacial Maximum, and the early deglaciation. These data are compared with a record of the kinematic circulation tracer (231Pa/230Th)xs extracted from the same sediment core. Both tracers indicate significant circulation changes preceding intense ice rafting during HE 2 by almost 2 kyr. Moreover, the Nd isotope record suggests the presence of deeply ventilating North Atlantic Deep Water early during Marine Isotope Stage 2 until it was replaced by Southern Source Water at ~27 ka. The early switch to high (Pa/Th)xs and radiogenic epsilon-Nd in relation to intensified ice rafting during HE 2 suggests that ice rafting into the open North Atlantic during major HE 2 was preceded by an early change of the AMOC. This opens the possibility that variations in AMOC contributed to or even triggered the ice sheet instability rather than merely responding to it.