450 resultados para 860-1.09
Resumo:
Deep marine late Pleistocene sediments from Ocean Drilling Program Sulu Sea Site 769 contain a high-resolution record of paleoceanographic change in this strongly monsoonal climatic setting in the tropical western Pacific. Detailed time series of planktonic foraminifer (G.ruber; white variety) d18O, d13C, and bulk CaCO3 mass accumulation rate (MAR) were generated, spanning the last 750 k.y. Sedimentation rates in this portion of the record average 8.5 cm/k.y., and vary from 4 to 16 cm/k.y. Cross spectral analysis of the d18O and d13C time-series demonstrate that each contains increased variance at the primary orbital periodicities. The d18O record shows strong variability in the precessional-band and closely correlates with the SPECMAP d18O record and other high-resolution records. The dominance of a 23-k.y cycle in the d18O record agrees with other studies of the monsoon system in the Indian Ocean that have documented the importance of precessional insolation as a monsoon-forcing mechanism. In addition, d13C is strongly coherent, with d18O at a period of 41 k.y (obliquity), suggesting a connection between surface water CO2 chemistry in the Sulu Sea and high- latitude climatic change. The d18O and d13C time-series both contain increased spectral variance at a period of 30 k.y. Although the source of 30-k.y. variability is unknown, other studies have documented late Pleistocene Pacific Oceanographic variability with a period of 30 k.y. Major- and trace-metal analyses were performed on a second, less-detailed sample series to independently assess paleoproductivity changes and bottom-water conditions through time. Glacial periods are generally times of increased calcium carbonate and copper accumulation. The positive association between these independent indicators of paleoproductivity suggests an increase in productivity in the basin during most glacial episodes. Changing bottom-water redox conditions were also assessed using the geochemical data. Low concentrations of molybdenum throughout the record demonstrate that bottom waters at this site were never anoxic during the last 750 k.y. The bioturbated character of the sediments agrees with this interpretation.
Resumo:
Site 695 lies on the southeast margin of the South Orkney microcontinent on the northern margin of the Weddell Sea, at 62°23.48'S, 43°27.10'W in 1305 m water depth. The inorganic properties of interstitial waters at this site, including sulfate reduction, biogenic methane production, and high concentrations of ammonia and phosphate, imply high microbial activity. However, no clear relationship between amino acid composition and concentration and the type of microbial activity (e.g., sulfate reduction or methane production) can be identified. The THAA (total hydrolyzable amino acids) values range between 2.45 and 17.31 µmol/L, averaging 7.14 µmol/L. The mean concentrations and relative abundance values of acidic, basic, neutral, aromatic, and sulfur-containing amino acids are 1.34 (18%), 1.09 (15%), 3.93 (54%), 0.50 (8%), and 0.02 (0%) µmol/L, respectively. Glycine is the most abundant amino acid residue, with serine, glutamic acid, and ornithine next. The DFAA (dissolved free amino acids) values range from 0.10 to 12.73 µmol/L, averaging 4.07 µmol/L. The acidic, basic, neutral, aromatic, and sulfurcontaining amino acids are on average 0.21, 0.79, 2.56, 0.41, and 0.01 µmol/L, respectively. The relative abundances of acidic, basic, neutral, and aromatic amino acids average 4%, 18%, 58%, and 15%, respectively. Predominance of DFAA over DCAA (dissolved combined amino acids) in interstitial waters of Lithologic Units I and II is contrary to the predominance of DCAA over DFAA in other interstitial waters and seawater. The comparison of amino acid compositions between DCAA and siliceous plankton suggests that the DCAA in interstitial waters originally comes from amino acids derived from siliceous plankton. However, other sources which are much enriched in glutamic acid contribute to the DCAA composition.
Resumo:
We studied the effects of elevated CO2 concentration and seawater acidity on inorganic carbon acquisition, photoinhibition and photoprotection as well as growth and respiration in the marine diatom Thalassiosira pseudonana. After having grown under the elevated CO2 level (1000 µatm, pH 7.83) at sub-saturating photosynthetically active radiation (PAR, 75 µmol photons/m**2/s) for 20 generations, photosynthesis and dark respiration of the alga increased by 25% (14.69 ± 2.55 fmol C/cell/h) and by 35% (4.42 ± 0.98 fmol O2/cell/h), respectively, compared to that grown under the ambient CO2 level (390 µatm, pH 8.16), leading to insignificant effects on growth (1.09 ± 0.08 (1/d))v 1.04 ± 0.07 (1/d)). The photosynthetic affinity for CO2 was lowered in the high-CO2 grown cells, reflecting a down-regulation of the CO2 concentrating mechanism (CCM). When exposed to an excessively high level of PAR, photochemical and non-photochemical quenching responded similarly in the low- and high-CO2 grown cells, reflecting that photoinhibition was not influenced by the enriched level of CO2. In T. pseudonana, it appeared that the energy saved due to the down-regulated CCM did not contribute to any additional light stress as previously found in another diatom Phaeodactylum tricornutum, indicating differential physiological responses to ocean acidification between these two diatom species.
Resumo:
A preliminary composite depth section was generated for Site 704 by splicing Holes 704A and 704B together over the interval 0-350 mbsf (0-9 m.y.). High-resolution carbonate and opal data from the cores were correlated with the calcium and silicon signals from the GST logging run in Hole 704B to identify missing and disturbed intervals in the cores. Paleomagnetic and biostratigraphic age boundaries were then transferred to the composite depth records to obtain an age model, and sedimentation rates were calculated by linear interpolation between datums. Algorithms relating measured dry-bulk density to carbonate content and depth were generated to produce predicted values of density for every sample. Accumulation rates of bulk, carbonate, opal, and terrigenous sediment components were then computed to generate a record of sediment deposition on the Meteor Rise that has a resolution of better than 200,000 yr for the period from 8.6 to 1.0 m.y. From 8.6 to 2.5 m.y., bulk-accumulation rates on the Meteor Rise averaged less than 2 g/cm**2/1000 yr and were dominated by carbonate deposition. The first significant opal deposition (6.0 m.y.) punctuated a brief (less than 0.6 Ma) approach of the Polar Front Zone (PFZ) northward that heralded a period of increasing severity of periodic carbonate dissolution events (terrigenous maxima) that abruptly terminated at 4.8 m.y. (base of the Thvera Subchron), synchronous with the reflooding of the Mediterranean after the Messinian salinity crisis. From 4.8 to 2.5 m.y., carbonate again dominated deposition, and the PFZ was far south except during brief northward excursions bracketing 4.2-3.9, 3.3-2.9, and 2.8-2.7 m.y. At 2.5 m.y., all components of bulk-accumulation rates increased dramatically (up to 15 g/cm2/1000 yr), and by 2.4 m.y., a pattern of alternating, high-amplitude carbonate and opal cyclicity marked the initiation of rapid glacial to interglaci·l swings in the position of the PFZ, synchronous with the "onset" of major Northern Hemisphere glaciation. Both mass-accumulation rates and the amplitude of the cycles decreased by about 2 m.y., but opal accumulation rates remained high up through the base of the Jaramillo (0.98 m.y.). From 1.9 to 1 m.y., the record is characterized by moderate amplitude fluctuations in carbonate and opal. This record of opal accumulation rates is interpreted as a long-term "Polar Front Indicator" that monitors the advance and retreat of the opal-rich PFZ northward (southward) toward (away from) the Meteor Rise in the subantarctic sector of the South Atlantic Ocean. The timing of PFZ migrations in the subantarctic South Atlantic Ocean is remarkably similar to Pliocene-Pleistocene climate records deduced from benthic oxygen isotope records in the North Atlantic Ocean (Raymo et al., 1989, doi:10.1029/PA004i004p00413; Ruddiman et al., 1989, doi:10.1029/PA004i004p00353). These include northward migrations during "cold" intervals containing strong glacial isotope stages (2.4-2.3, 2.1-2.0, 1.95-1.55, 1.45-1.30 m.y. and at about 1.13 and 1.09 m.y.) and southward migrations during "warm" intervals containing weak glacial and/or strong interglacial stages (2.45-2.40, 2.30-2.10, 2.00-1.95, 1.52-1.45, 1.30-1.18, 1.11, and 1.06-0.93 m.y.). Although our preliminary composite record is not continuous (some stages are obviously missing), there is hope that future work will identify these missing intervals in the as yet incomplete Hole 704B and will extend this high-resolution Southern Hemisphere climate record back to 8.6 m.y.