304 resultados para 85-575_Site


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen and carbon isotope stratigraphies are given for the planktonic foraminifer Globoquadrina venezuelana (a deep-dwelling species) at three DSDP sites located along a north-south transect at approximately 133°W across the Pacific equatorial high-productivity zone. The records obtained at Sites 573 and 574 encompass the lower Miocene. At Site 575 the record includes the middle Miocene and extends into the lowermost lower Miocene. The time resolution of the planktonic foraminifer isotope record varies from 50,000 to 500,000 yr. The benthic foraminifer Oridorsalis umbonatus was analyzed for isotope composition at a few levels of Site 575. Isotope stratigraphies for all three sites are compared with carbonate, foraminifer preservation, and grain size records. We identified a number of chemostratigraphic signals that appear to be synchronous with previously recognized signals in the western equatorial Pacific and the tropical Indian Ocean, and thus provide useful tools for chronostratigraphic correlations. The sedimentary sequence at Site 573 is incomplete and condensed, whereas the sequences from Sites 574 and 575 together provide a complete lower Miocene record. The expanded nature of this record, which was recovered with minimum disturbance and provides excellent calcareous and siliceous biostratigraphic control, offers a unique opportunity to determine the precise timing of early Miocene events. Paleomagnetic data from the hydraulic piston cores at Site 575 for the first time allow late early Miocene paleoceanographic events to be tied directly to the paleomagnetic time scale. The multiple-signal stratigraphies provide clues for paleoceanographic reconstruction during the period of preconditioning before the major middle Miocene cooling. In the lowermost lower Miocene there is a pronounced shift toward greater d13C values (by -1%) within magnetic Chron 16 (between approximately 17.5 and 16.5 Ma). The "Chron 16 Carbon Shift" coincides with the cessation of an early Miocene warming trend visible in the d18O signals. Values of d13C remain high until approximately 15 Ma, then decrease toward initial (early Miocene) values near 13.5 Ma. The broad lower to middle Miocene d13C maximum appears to correlate with the deposition of organic-carbon-rich sediments around the margin of the northern Pacific in the Monterey Formation of California and its lateral equivalents. The sediments rimming the Pacific were probably deposited under coastal upwelling conditions that may have resulted from the development of a strong permanent thermocline. Deposition in the upwelling areas occurred partly under anaerobic conditions, which led to the excess extraction of organic carbon from the ocean. The timing of the middle Miocene cooling, which began after the Chron 16 Carbon Shift, suggests that the extraction of organic carbon preconditioned the ocean-atmosphere system for subsequent cooling. A major carbonate dissolution event in the late early Miocene, starting at approximately 18.7 Ma, is associated with the enrichment in 13C. The maximum dissolution is coeval with the Chron 16 Carbon Shift. It corresponds to a prominent acoustic horizon that can be traced throughout the equatorial Pacific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen isotopes in marine sulfate (d18O SO4) measured in marine barite show variability over the past 10 million years, including a 5per mil decrease during the Plio-Pleistocene, with near-constant values during the Miocene that are slightly enriched over the modern ocean. A numerical model suggests that sea level fluctuations during Plio-Pleistocene glacial cycles affected the sulfur cycle by reducing the area of continental shelves and increasing the oxidative weathering of pyrite. The data also require that sulfate concentrations were 10 to 20% lower in the late Miocene than today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equatorial Pacific is an important part of the global carbon cycle and has been affected by climate change through the Cenozoic (65 Ma to present). We present a Miocene (12-24 Ma) biogenic sediment record from Deep Sea Drilling Project (DSDP) Site 574 and show that a CaCO3 minimum at 17 Ma was caused by elevated CaCO3 dissolution. When Pacific Plate motion carried Site 574 under the equator at about 16.2 Ma, there is a minor increase in biogenic deposition associated with passing under the equatorial upwelling zone. The burial rates of the primary productivity proxies biogenic silica (bio-SiO2) and biogenic barium (bio-Ba) increase, but biogenic CaCO3 decreases. The carbonate minimum is at ~17 Ma coincident with the beginning of the Miocene climate optimum; the transient lasts from 18 to 15 Ma. Bio-SiO2 and bio-Ba are positively correlated and increase as the equator was approached. Corg is poorly preserved, and is strongly affected by changing carbonate burial. Terrestrial 232Th deposition, a proxy for aeolian dust, increases only after the Site 574 equator crossing. Since surface production of bio-SiO2, bio-Ba, and CaCO3 correlate in the modern equatorial Pacific, the decreased CaCO3 burial rate during the Site 574 equator crossing is driven by elevated CaCO3 dissolution, representing elevated ocean carbon storage and elevated atmospheric CO2. The length of the 17 Ma CaCO3 dissolution transient requires interaction with a 'slow' part of the carbon cycle, perhaps elevated mantle degassing associated with the early stages of Columbia River Basalt emplacement.