336 resultados para 833


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The euphotic depth (Zeu) is a key parameter in modelling primary production (PP) using satellite ocean colour. However, evaluations of satellite Zeu products are scarce. The objective of this paper is to investigate existing approaches and sensors to estimate Zeu from satellite and to evaluate how different Zeu products might affect the estimation of PP in the Southern Ocean (SO). Euphotic depth was derived from MODIS and SeaWiFS products of (i) surface chlorophyll-a (Zeu-Chla) and (ii) inherent optical properties (Zeu-IOP). They were compared with in situ measurements of Zeu from different regions of the SO. Both approaches and sensors are robust to retrieve Zeu, although the best results were obtained using the IOP approach and SeaWiFS data, with an average percentage of error (E) of 25.43% and mean absolute error (MAE) of 0.10 m (log scale). Nevertheless, differences in the spatial distribution of Zeu-Chla and Zeu-IOP for both sensors were found as large as 30% over specific regions. These differences were also observed in PP. On average, PP based on Zeu-Chla was 8% higher than PP based on Zeu-IOP, but it was up to 30% higher south of 60°S. Satellite phytoplankton absorption coefficients (aph) derived by the Quasi-Analytical Algorithm at different wavelengths were also validated and the results showed that MODIS aph are generally more robust than SeaWiFS. Thus, MODIS aph should be preferred in PP models based on aph in the SO. Further, we reinforce the importance of investigating the spatial differences between satellite products, which might not be detected by the validation with in situ measurements due to the insufficient amount and uneven distribution of the data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The K-Ar ages from the basaltic rocks of Leg 134 range from Miocene to Holocene (Table 1). Samples were selected in consultation with shipboard scientists; choice of the material from the forearc sites was very limited and confined to clasts. There was a wider choice of material from the sill at Site 833 in the North Aoba Basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cretaceous has long been recognized as a time when greenhouse conditions were fueled by elevated atmospheric CO2 and accompanied by perturbations of the global carbon cycle described as oceanic anoxic events (OAEs). Yet, the magnitude and frequency of temperature change during this interval of warm and equable climate are poorly constrained. Here we present a high-resolution record of sea-surface temperatures (SSTs) reconstructed using the TEX86 paleothermometer for a sequence of early Aptian organic-rich sediments deposited during the first Cretaceous OAE (OAE1a) at Shatsky Rise in the tropical Pacific. SSTs range from ~30 to ~36 °C and include two prominent cooling episodes of ~4 °C. The cooler temperatures reflect significant temperature instability in the tropics likely triggered by changes in carbon cycling induced by enhanced burial of organic matter. SST instability recorded during the early Aptian in the Pacific is comparable to that reported for the late Albian-early Cenomanian in the Atlantic, suggesting that such climate perturbations may have recurred during the Cretaceous with concomitant consequences for biota and the marine environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Sites 832 and 833 were drilled in the intra-arc North Aoba Basin of the New Hebrides Island Arc (Vanuatu). High volcanic influxes in the intra-arc basin sediment resulting from erosion of volcanic rocks from nearby islands and from volcanic activity are associated with characteristic magnetic signals. The high magnetic susceptibility in the sediment (varying on average from 0.005 to more than 0.03 SI) is one of the most characteristic physical properties of this sedimentary depositional environment because of the high concentration of magnetites in redeposited ash flows and in coarse-grained turbidites. Susceptibility data correlate well with the high resolution electrical resistivity logs recorded by the formation microscanner (FMS) tool. Unlike the standard geophysical logs, which have low vertical resolution and therefore smooth the record of the sedimentary process, the FMS and whole-core susceptibility data provide a clearer picture of turbiditic sediment deposition. Measurements of Curie temperatures and low-temperature susceptibility behavior indicate that the principal magnetic minerals in ash beds, silt, and volcanic sandstone are Ti-poor titanomagnetite, whereas Ti-rich titanomagnetites are found in the intrusive sills at the bottom of Site 833. Apart from an increase in the concentration of magnetite in the sandstone layer, acquisition of isothermal and anhysteretic remanences does not show significant differences between sandstone and clayey silts. The determination of the anisotropy of magnetic susceptibility (AMS) in more than 400 samples show that clayey siltstone have a magnetic anisotropy up to 15%, whereas the AMS is much reduced in sandstone layers. The magnetic susceptibility fabric is dominated by the foliation plane, which is coplanar to the bedding plane. Reorientations of the samples using characteristic remanent magnetizations indicate that the bedding planes dip about 10° toward the east, in agreement with results from FMS images. Basaltic sills drilled at Site 833 have high magnetic susceptibilities (0.05 to 0.1 SI) and strong remanent magnetizations. Magnetic field anomalies up to 50 µT were measured in the sills by the general purpose inclinometer tool (GPIT). The direction of the in-situ magnetic anomaly vectors, calculated from the GPIT, is oriented toward the southeast with shallow inclinations which suggests that the sill intruded during a reversed polarity period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments cored along the southwestern Iberian margin during Integrated Ocean Drilling Program Expedition 339 provide constraints on Mediterranean Outflow Water (MOW) circulation patterns from the Pliocene epoch to the present day. After the Strait of Gibraltar opened (5.33 million years ago), a limited volume of MOW entered the Atlantic. Depositional hiatuses indicate erosion by bottom currents related to higher volumes of MOW circulating into the North Atlantic, beginning in the late Pliocene. The hiatuses coincide with regional tectonic events and changes in global thermohaline circulation (THC). This suggests that MOW influenced Atlantic Meridional Overturning Circulation (AMOC), THC, and climatic shifts by contributing a component of warm, saline water to northern latitudes while in turn being influenced by plate tectonics.