461 resultados para 8.2 ka event,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Holocene and latest Pleistocene oceanographic conditions and the coastal climate of northern California have varied greatly, based upon high-resolution studies (ca. every 100 years) of diatoms, alkenones, pollen, CaCO3%, and total organic carbon at Ocean Drilling Program (ODP) Site 1019 (41.682°N, 124.930°W, 980 m water depth). Marine climate proxies (alkenone sea surface temperatures [SSTs] and CaCO3%) behaved remarkably like the Greenland Ice Sheet Project (GISP)-2 oxygen isotope record during the Bølling-Allerod, Younger Dryas (YD), and early part of the Holocene. During the YD, alkenone SSTs decreased by >3°C below mean Bølling-Allerod and Holocene SSTs. The early Holocene (ca. 11.6 to 8.2 ka) was a time of generally warm conditions and moderate CaCO3 content (generally >4%). The middle part of the Holocene (ca. 8.2 to 3.2 ka) was marked by alkenone SSTs that were consistently 1-2°C cooler than either the earlier or later parts of the Holocene, by greatly reduced numbers of the gyre-diatom Pseudoeunotia doliolus (<10%), and by a permanent drop in CaCO3% to <3%. Starting at ca. 5.2 ka, coastal redwood and alder began a steady rise, arguing for increasing effective moisture and the development of the north coast temperate rain forest. At ca. 3.2 ka, a permanent ca. 1°C increase in alkenone SST and a threefold increase in P. doliolus signaled a warming of fall and winter SSTs. Intensified (higher amplitude and more frequent) cycles of pine pollen alternating with increased alder and redwood pollen are evidence that rapid changes in effective moisture and seasonal temperature (enhanced El Niño-Southern Oscillation [ENSO] cycles) have characterized the Site 1019 record since about 3.5 ka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lakes Prespa and Ohrid, in the Balkan region, are considered to be amongst the oldest lakes in Europe. Both lakes are hydraulically connected via karst aquifers. From Lake Ohrid, several sediment cores up to 15 m long have been studied over the last few years. Here, we document the first long sediment record from nearby Lake Prespa to clarify the influence of Lake Prespa on Lake Ohrid and the environmental history of the region. Radiocarbon dating and dated tephra layers provide robust age control and indicate that the 10.5 m long sediment record from Lake Prespa reaches back to 48 ka. Glacial sedimentation is characterized by low organic matter content and absence of carbonates in the sediments, which indicate oligotrophic conditions in both lakes. Holocene sedimentation is characterized by particularly high carbonate content in Lake Ohrid and by particularly high organic matter content in Lake Prespa, which indicates a shift towards more mesotrophic conditions in the latter. Long-term environmental change and short-term events, such as related to the Heinrich events during the Pleistocene or the 8.2 ka cooling event during the Holocene, are well recorded in both lakes, but are only evident in certain proxies. The comparison of the sediment cores from both lakes indicates that environmental change affects particularly the trophic state of Lake Prespa due to its lower volume and water depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central waters of the North Atlantic are fundamental for ventilation of the upper ocean and are also linked to the strength of the Atlantic Meridional Overturning Circulation (AMOC). Here, we show based on benthic foraminiferal Mg/Ca ratios, that during times of enhanced melting from the Laurentide Ice Sheet (LIS) between 9.0-8.5 thousand years before present (ka) the production of central waters weakened the upper AMOC resulting in a cooling over the Northern Hemisphere. Centered at 8.54 ± 0.2 ka and 8.24 ± 0.1 ka our dataset records two ~150-year cooling events in response to the drainage of Lake Agassiz/Ojibway, indicating early slow-down of the upper AMOC in response to the initial freshwater flux into the subpolar gyre (SPG) followed by a more severe weakening of both the upper and lower branches of the AMOC at 8.2 ka. These results highlight the sensitivity of regional North Atlantic climate change to the strength of central-water overturning and exemplify the impact of both gradual and abrupt freshwater fluxes on eastern SPG surface water convection. In light of the possible future increase in Greenland Ice Sheet melting due to global warming these findings may help us to better constrain and possibly predict future North Atlantic climate change.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An early Holocene record from the Gulf of Mexico (GOM) reveals climatic and hydrologic changes during the interval from 10.5 to 7 thousand calendar years before present from paired analyses of Mg/Ca and d18O on foraminiferal calcite. The sea surface temperature record based on foraminiferal Mg/Ca contains six oscillations and an overall ~1.5°C warming that appears to be similar to the September-March insolation difference. The d18O of seawater in the GOM (d18OGOM) record contains six oscillations, including a -0.8 per mil excursion that may be associated with the "8.2 ka climate event" or a broader climate anomaly. Faunal census records from three GOM cores exhibit similar changes, suggesting subcentennial-scale variability in the incursions of Caribbean waters into the GOM. Overall, our results provide evidence that the subtropics were characterized by decadal- to centennial-scale climatic and hydrologic variability during the early Holocene.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: