107 resultados para 8-69
Resumo:
I have compiled CaCO3 mass accumulation rates (MARs) for the period 0-25 Ma for 144 Deep Sea Drilling Project and Ocean Drilling Program drill sites in the Pacific in order to investigate the history of CaCO3 burial in the world's largest ocean basin. This is the first synthesis of data since the beginning of the Ocean Drilling Program. Sedimentation rates, CaCO3 contents, and bulk density were estimated for 0.5 Myr time intervals from 0 to 14 Ma and for 1 Myr time intervals from 14 to 25 Ma using mostly data from Initial Reports volumes. There is surprisingly little coherence between CaCO3 MAR time series from different Pacific regions, although regional patterns exist. A transition from high to low CaCO3 MAR from 23-20 Ma is the only event common to the entire Pacific Ocean. This event is found worldwide. The most likely cause of lowered pelagic carbonate burial is a rising sea-level trend in the early Miocene. The central and eastern equatorial Pacific is the only region with adequate drill site coverage to study carbonate compensation depth (CCD) changes in detail for the entire Neogene. The latitude-dependent decrease in CaCO3 production away from the equator is an important defining factor of the regional CCD, which shallows away from the equatorial region. Examination of latitudinal transects across the equatorial region is a useful way to separate the effects of changes in carbonate production ('productivity') from changes in bottom water chemistry ('dissolution') upon carbonate burial.
Resumo:
Water extracted from opal-CT ("porcellanite", "cristobalite"), granular microcrystalline quartz (chert), and pure fibrous quartz (chalcedony) in cherts from the JOIDES Deep Sea Drilling Project is 56? to 87? depleted in deuterium relative to the water in which the silica formed. This large fractionation is similar in magnitude and sign to that observed for hydroxyl in clay minerals and suggests that water extracted from these forms of silica has been derived from hydroxyl groups within the silica. Delta18O-values for opal-CT at sites 61, 64, 70B and 149 vary from 34.3? to 37.2? and show no direct correlation with depth of burial. Granular microcrystaUine quartz in these cores is 0.5 ? depleted in 18O relative to coexisting opal-CT at sediment depths of 100 m and the depletion increases to 2? for sediments buried below 384 m. These relationships suggest that opal-CT forms before significant burial while granular microcrystalline quartz forms during deeper burial at warmer temperatures. The temperature at which opal-CT forms is thus probably approximately equal to the temperature of the overlying bottom water. Isotopic temperatures deduced for opal-CT formation are preliminary and very approximate, but yield Eocene deep-water temperatures of 5-13°C, and 6°C for the upper Cretaceous sample. Pure euhedral quartz crystals lining a cavity in opal-CT at 388 m in core 8-70B-4-CC have a ~delta18O value of +29.8? and probably formed near maximum burial. The isotopic temperature is approximately 32 ° C.
Resumo:
About 150 basalt samples from Hole 504B, near the Costa Rica Rift were analyzed for sulfur content and sulfur-isotope composition. The basement in Hole 504B can be divided into an upper part, which has oxidative alteration (274.5-550 m below sea floor), and a lower part, which has nonoxidative alteration (550-835 m below sea floor) (the interval from 540 to 585 meters actually is transitional). This division is reflected in both the sulfur content and the sulfurisotope composition. Oxidative alteration of basalts by sea water at low temperatures has resulted in a depletion in sulfur in the upper part of the hole (mostly less than 600 ppm S) as compared to fresh sulfur-saturated oceanic tholeiites (900-1200 ppm S). High amounts of sulfur in the lower part of the hole are a result of precipitation of secondary pyrite under non-oxidative or weakly oxidative conditions from solutions which dissolved igneous sulfides. The average sulfur-isotope composition of the primary igneous sulfides is d34S = -0.01 per mil, which is close to the assumed mantle sulfur composition (d34S = 0 per mil. Pyrite and sulfate sulfur extracted together in a separate preparation step (as "pyrite-sulfate" sulfur) indicate addition of sea-water sulfate to the upper part of the basalts. The d34S of secondary pyrite isolated by hand-picking varies between -8.0 and +5.8 per mil; the "pyrite-sulfate" sulfur (d34S = -4.8 to +10.5 per mil), as well as that of the isolated pyrite, may have originated in the precipitation of pyrite from solutions containing sulfur from the dissolution of igneous sulfides, but addition of sulfur transported by hydrothermal solutions cannot be excluded.