301 resultados para 69-504C
Resumo:
The NRM intensity, AF demagnetization characteristics, hysteresis parameters, initial susceptibility, and thermomagnetic characteristics of 18 basalt specimens from Deep Sea Drilling Project Hole 504B were determined. In six samples, the grain size was large enough to allow microprobe analysis. We conclude (1) that the dominant magnetic mineral is titanomagnetite/titanomaghemite; (2) that, except for the upper few meters of the core where the grains are in the stable monodomain state, the grain size of the magnetic mineral lies in the pseudo-single-domain range (< 10 µm); (3) that maghemitization (i.e., low-temperature (< 350°C) oxidation) has taken place. We discuss possible geological histories.
Resumo:
Chert, Porcellanite, and other silicified rocks formed in response to high heat flow in the lower 50 meters of 275 meters of sediments at Deep Sea Drilling Project Site 504, Costa Rica Rift. Chert and Porcellanite partly or completely replaced upper Miocene chalk and limestone. Silicified rock occurs as nodules, laminae, stringers, and casts of burrows, and consists of quartz and opal-CT in varying amounts, associated with secondary calcite. The secondary silica was derived from dissolution of opal-A (biogenic silica), mostly diatom frustules and radiolarian tests. Temperature data obtained at the site indicate that transformation of opal-A to opal-CT began at about 50°C, and transformation from opal-CT to quartz at about 55°C. Quartz is most abundant close to basement basalts. These silica transformations occurred over the past 1 m.y., and took place so rapidly that there was incomplete ordering of opal-CT before transformation to quartz; opal-CT formed initially with an uncommonly wide d spacing. Quartz shows poor crystallinity. Chemical data show that the extensively silicified rocks consist of over 96% SiO2; in these rocks, minor and trace elements decreased greatly, except for boron, which increased. Low Al2O3 and TiO2 contents in all studied rocks preclude the presence of significant volcanic or terrigenous detritus. Mn content increases with depth, perhaps reflecting contributions from basalts or hydrothermal solutions. Comparisons with cherts from oceanic plateaus in the central Pacific point to a more purely biogenic host sediment for the Costa Rica Rift cherts, more rapid precipitation of quartz, and formation nearer a spreading center. Despite being closer to continental sources of ash and terrigenous detritus, Costa Rica Rift cherts have lower Al2O3, Fe2O3, and Mn concentrations.
Resumo:
A detailed oxygen isotope record (resolution: about 2500 years) has been obtained for the Pleistocene sediments at Hole 504. Preliminary measurements made deeper in the section suggest that at least the upper Pliocene section is also amenable to detailed stable isotope work. The record for the middle Pleistocene resembles that obtained previously from piston cores in the western equatorial Pacific, although the superior resolution of this high-accumulation-rate site reveals a greater amplitude of isotope variation than previously observed. The record for the lower Pleistocene reveals variation that is both greater in amplitude and higher in frequency than apparent from previously analyzed piston cores. The site provides the best material recovered to date for the study of the evolution of climatic variability during the past few million years.
Resumo:
Primary sulfide mineralization in basalts of the Costa Rica Rift occurs mainly in chrome-spinel-bearing olivine tholeiites. Primary sulfides form both globules, consisting of quenched single-phase solid solutions, and irregular polymineralic segregations of pyrrhotite, chalcopyrite, cubanite, and pentlandite. Two types of sulfide solid solutions - iron-nickel (Mss) and iron-copper (Iss) - were found among sulfide globules. These types appear to have formed because of sulfide-sulfide liquid immiscibility in the host magmas; as proved by the presence of globules with a distinct phase boundary between Mss and Iss. Such two-phase globules are associated with large olivine phenocrysts. Inhomogeneties among the globule composition likewise are caused by sulfide-sulfide immiscibility. Secondary sulfides form irregular segregations and veins consisting of pyrite, marcasite, and chalcopyrite.
Resumo:
From laboratory tests under simulated downhole conditions we tentatively conclude that the higher the triaxial-compressive strength, the lower the drilling rate of basalts from DSDP Hole 504B. Because strength is roughly proportional to Young's modulus of elasticity, which is related in turn to seismic-wave velocities, one may be able to estimate drilling rates from routine shipboard measurements. However, further research is needed to verify that P-wave velocity is a generally useful predictor of relative drilling rate.