266 resultados para 56-434A


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral assemblages of DSDP Holes 436 and 438A and the upper section of Hole 439 (871.5-911.0 m sub-bottom) resemble each other and are composed of montmorillonite (probably a small portion of montmorillonite/illite mixed-layer clays), illite, chlorite, kaolinite, quartz, plagioclase, hornblende, calcite, dolomite, siderite, gypsum, pyrite, and halite. In the middle section of Hole 439 (933.5-1041.0 m), clinoptilolite is also found. In the lower section of Hole 439 (1077.5-1150.0 m), montmorillonite is not confirmed, and clinoptilolite and mixed-layer illite are found. These assemblages, which also contain detrital kaolinite, are generally found in sediments from brackish-water environments. At Site 439, more than 1000 meters of sediment might have been removed by erosion at the base.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C1-C5 hydrocarbons from DSDP Legs 56 and 57 sediment gas pockets were analyzed on board ship. Results suggest that the C2-C5 hydrocarbons accompanied biogenic methane and were generated at low temperatures - less than 50° C - either by microorganisms or by low-temperature chemical reactions. Neopentane, a rare constituent of petroleum, is the major C5 component (about 80%) in much of the sediment at Site 438. This compound, which appeared in smaller amounts at Sites 434, 439, 440, and 441, seems to correlate with either fractured or coarse-grained sediments. Scatter in C4 and C5 isomer ratios and generally good correlation between C3, C4 and C5 components suggest local sources for these molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A geological model of subduction postulated by Karig, Ingle, et al. (1975) and Karig and Sharman (1975) proposes that the sedimentary prism at the foot of the landward wall is being actively built as sediment is scraped off the subducting oceanic and plastered onto the base of the wedge, forming an accretionary wedge containing overthrust sedimentary layers or intense sedimentary folding. Because overlying layers must continually be uplifted and compressed to accommodate new matter at the base, the accreting wedge will provide a geochemical record of this process at or near the Japan Trench. Several recent papers have discussed the metalliferous sediments on the active oceanic ridges. The geochemistry of such sediments is now reasonably well known: generally these deposits are considered products of volcanic processes (Boström and Peterson, 1969; Böstrom et al., 1969; Horowitz, 1970, 1974; Cronan et al., 1972; Cronan and Garrett, 1973). The geochemistry of subduction zone sediments, however, is less well known, and the need for studies of these sediments is particularly urgent if such sediments provide a record of the effects of subduction of oceanic plates under continental crust. Because the Japan Trench contains welldeveloped subduction zone deposits, Leg 56 sampling was of utmost importance to the discovery of how they originate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediments from Sites 582 (11 samples), 583 (19 samples), 584 (31 samples), 294 (1 sample), 296 (9 samples), 297 (3 samples), 436 (11 samples), and 439 (3 samples) were analyzed by X-ray fluorescence and/or instrumental neutron activation analysis. Ten major elements and 24 minor and trace elements (including 7 rare earth elements) were determined with these methods. Geochemistry varies systematically with both the site location and sediment age. Such variations are explained in terms of changes in sedimentation processes caused by plate motion and changes in ocean currents.