461 resultados para 54-419


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of the hydraulic piston corer during DSDP Leg 70 in the Galapagos mounds area allowed recovery of an undisturbed sedimentary sequence down to the basement. It thus became possible to establish the chronology of different events. Several holes on and off the mounds were studied, using uranium series disequilibrium methods of age determination and oxygen isotope stratigraphy. The following sequence was thereby established: 1) From 600,000 to 300,000 years ago there was normal pelagic sedimentation, with an injection of uranium-rich solution, probably of hydrothermal origin, between 400,000 and 300,000 years ago. 2) From 300,000 to 90,000 years ago, nontronitic clay formed, replacing a pre-existing sediment. 3) From 60,000 to 20,000 years ago, manganese oxide deposits formed, probably also replacing pre-existing sediments. 4) About 19,000 years ago there occurred a uranium injection from seawater, attributed to the end of the hydrothermal circulation. In some holes, especially Hole 424, Leg 54, younger manganese oxides have been found, indicating that some mounds may be presently active.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sediments recovered on Deep Sea Drilling Project Leg 54 appear to be mixtures of the normal pelagic sediments of the area and hydrothermally produced manganese and iron phases. The latter are mineralogically and chemically very similar to phases recovered from surficial sampling of the mounds. The hydrothermal nontronite which is approximately 15 meters thick in the three holes is essentially free of carbonate or detrital contaminants. The basal sediments are similar to the carbonate oozes presently being deposited in the region, but are enriched in Mn and Fe. This enrichment appears to be the result of hydrothermal deposition that took place at or near the spreading center and may not be associated with the mounds formation. Three different hypotheses for the formation of the nontronite layer and the mounds deposits are considered. An initial deposition of a widespread nontronite layer and subsequent diapiric-like movement of the layer into carbonates could account for the observed stratigraphy; however, if this be correct, analogous deposits should be present in other DSDP sites. The second hypothesis - replacement of the normal sediments by nontronite - may be feasible, but the high purity of the nontronite requires dissolution and removal of refractory elements. The third hypothesis, metal deposition in an advancing oxidation gradient, is compatible with submersible observations of the mounds; however, it can account only for the high purity of the nontronite by very rapid deposition of the hydrothermal phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monograph gives results of studies of sediments and rocks collected from D/S Glomar Challenger in the Pacific Ocean. These studies have been based on the lithological facial analysis applied for the first time for identificating genesis of ocean sediments. These results include new ideas on formation of the Earth's sedimentary cover and can be used for constructing regional and global schemes of ocean paleogeography, reconstructing some structures, correlating sedimentation on continents and in oceans, estimating perspectives of oil- and gas-bearing deposits and ore formation. The monograph also gives the first petrographic classification of organic matter in black shales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salinity increase in the subtropical gyre system may have pre-conditioned the North Atlantic Ocean for a rapid return to stronger overturning circulation and high-latitude warming following meltwater events during the Last Glacial period. Here we investigate the Gulf Stream - subtropical gyre system properties over Dansgaard-Oeschger (DO) cycles 14 to 12, including Heinrich ice-rafting event 5. During the Holocene and Last Glacial Maximum a positive gradient in surface dwelling planktonic foraminifera d18O (Globigerinoides ruber) can be observed between the Gulf Stream and subtropical gyre, due to decreasing temperature, increasing salinity, and a change from summer to year-round occurrence of G. ruber. We assess whether this gradient was a common feature during stadial-interstadial climate oscillations of Marine Isotope Stage 3, by comparing existing G. ruber d18O from ODP Site 1060 (subtropical gyre location) and new data from ODP Site 1056 (Gulf Stream location) between 54 and 46 ka. Our results suggest that this gradient was largely absent during the period studied. During the major warm DO interstadials 14 and 12 we infer a more zonal and wider Gulf Stream, influencing both ODP Sites 1056 and 1060. A Gulf Stream presence during these major interstadials is also suggested by the large vertical d18O gradient between shallow dwelling planktonic foraminifera species, especially G. ruber, and the deep dwelling species Globorotalia inflata at site 1056, which we associate with strong summer stratification and Gulf Stream presence. A major reduction in this vertical d18O gradient from 51 ka until the end of Heinrich event 5 at 48.5 ka suggests site 1056 was situated within the subtropical gyre in this mainly cold period, from which we infer a migration of the Gulf Stream to a position nearer to the continental shelf, indicative of a narrower Gulf Stream with possibly reduced transport.