519 resultados para 198-1209


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Shatsky Rise, a medium-sized large igneous province in the west Central Pacific Ocean, has three main topographic highs that preserve a thick sedimentary record from Cretaceous through Cenozoic. During Ocean Drilling Program (ODP) Leg 198 to Shatsky Rise, a total of ~768 m of late Miocene-Holocene sediments was recovered from six sites. Sites 1207 and 1208 were drilled on the Northern and Central Highs, respectively, and yielded expanded late Miocene-Holocene sequences. Sites 1209, 1210, 1211, and 1212 were drilled on the Southern High and yielded shorter sequences of similar age. Clearly interpretable magnetic stratigraphies were obtained from all sites using the shipboard pass-through magnetometer. These results were augmented using discrete sample cubes (7 cm**3) collected shipboard and measured postcruise. Miocene age sediments are separated by a hiatus from Oligocene, Eocene, and Cretaceous age sediments beneath. An astrochronological age model was developed for the six sites based on cycles observed in reflectance data, measured shipboard. This age model is in good agreement with published astrochronological polarity chron ages in the 1 to 6 Ma interval.

Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow us to construct a comprehensive astronomically calibrated stratigraphic framework with an unprecedented accuracy for both the Atlantic and the Pacific Oceans covering the entire Paleocene epoch based on the identification of the stable long-eccentricity cycle (405-kyr). High resolution X-ray fluorescence (XRF) core scanner and non-destructive core logging data from Sites 1209 through1211 (Leg 198) and Sites 1262, 1267 (Leg 208) are the basis for such a robust chronostratigraphy. Former investigated marine (ODP Sites 1001 and 1051) and land-based (e.g., Zumaia) sections have been integrated as well. The high-fidelity chronology is the prerequisite for deciphering mechanisms in relation to prominent transient climatic events as well as completely new insights into Greenhouse climate variability in the early Paleogene. We demonstrate that the Paleocene epoch covers 24 long eccentricity cycles. We also show that no definite absolute age datums for the K/Pg boundary or the Paleocene - Eocene Thermal Maximum (PETM) can be provided by now, because of still existing uncertainties in orbital solutions and radiometric dating. However, we provide two options for tuning of the Paleocene which are only offset by 405-kyr. Our orbitally calibrated integrated Leg 208 magnetostratigraphy is used to revise the Geomagnetic Polarity Time Scale (GPTS) for Chron C29 to C25. We established a high-resolution calcareous nannofossil biostratigraphy for the South Atlantic which allows a much more detailed relative scaling of stages with biozones. The re-evaluation of the South Atlantic spreading rate model features higher frequent oscillations in spreading rates for magnetochron C28r, C27n, and C26n.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precise cause and timing of the Cretaceous-Paleocene (K-P) mass extinction 65 Ma ago remains a matter of debate. Many advocate that the extinction was caused by a meteorite impact at Chicxulub, Mexico, and a number of potential kill-mechanisms have been proposed for this. Although we now have good constraints on the size of this impact and chemistry of the target rocks, estimates of its environmental consequences are hindered by a lack of knowledge about the obliquity of this impact. An oblique impact is likely to have been far more catastrophic than a sub-vertical one, because greater volumes of volatiles would have been released into the atmosphere. The principal purpose of this study was to characterize shocked quartz within distal K-P ejecta, to investigate whether the quartz distribution carried a signature of the direction and angle of impact. Our analyses show that the total number, maximum and average size of shocked quartz grains all decrease gradually with paleodistance from Chicxulub. We do not find particularly high abundances in Pacific sites relative to Atlantic and European sites, as has been previously reported, and the size-distribution around Chicxulub is relatively symmetric. Ejecta samples at any one site display features that are indicative of a wide range of shock pressures, but the mean degree of shock increases with paleodistance. These shock- and size-distributions are both consistent with the K-P layer having been formed by a single impact at Chicxulub. One site in the South Atlantic contains quartz indicating an anomalously high average shock degree, that may be indicative of an oblique impact with an uprange direction to the southeast +/- 45°. The apparent continuous coverage of proximal ejecta in this quadrant of the crater, however, suggests a relatively high impact angle of >45°. We conclude that some of the more extreme predictions of the environmental consequences of a low-angle impact at Chicxulub are probably not applicable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Paleocene-Eocene Thermal Maximum (PETM, ~5 million years ago) was an interval of global warming and ocean acidification attributed to rapid release and oxidation of buried carbon. We show that the onset of the PETM coincided with a prominent increase in the origination and extinction of calcareous phytoplankton. Yet major perturbation of the surface-water saturation state across the PETM was not detrimental to the survival of most calcareous nannoplankton taxa and did not impart a calcification or ecological bias to the pattern of evolutionary turnover. Instead, the rate of environmental change appears to have driven turnover, preferentially affecting rare taxa living close to their viable limits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eolian dust in pelagic deep sea sediments can be used to reconstruct ancient wind patterns and paleoenvironmental response to climate change. Traditional methods to determine dust accumulation involve isolating the non-dissolvable aluminosilicate minerals from deep sea sediments through a series of chemical leaches, but cannot differentiate between minerals from eolian, authigenic and volcanogenic sources. Other geochemical proxies, such as sedimentary 232Th and crustal 4He content, have been used to construct high-resolution records of atmospheric dust fluxes to the deep sea during the Quaternary. Here we use sedimentary Th content as a proxy for terrigenous material (eolian dust) in ~58 Myr-old sediments from the Shatsky Rise (ODP Site 1209) and compare our results with previous dust estimates generated using the traditional chemical extraction method and sedimentary 4He(crustal) concentrations. We find excellent agreement between Th-based dust estimates and those generated using the traditional method. In addition our results show a correlation between sedimentary Th and 4He(crustal) content, which suggests a source older than present day Asian loess supplied dust to the central subtropical Pacific Ocean during the early Paleogene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Leg 198, the Cretaceous/Paleocene (K/P) boundary was recovered in a remarkable set of cores in nine separate holes at Sites 1209, 1210, 1211, and 1212 on the Southern High of Shatsky Rise. The boundary succession includes an uppermost Maastrichtian white to very pale orange, slightly indurated nannofossil ooze overlain by lowermost Paleocene grayish orange foraminiferal ooze. The boundary between the uppermost Maastrichtian and the lowermost Paleocene is clearly bioturbated. The contact surface is irregular, and pale orange burrows extend 10 cm into the white Maastrichtian ooze. Preliminary investigations conducted on board revealed that the deepest sections of these burrows yielded highly abundant, minute planktonic foraminiferal assemblages dominated by Guembelitria with rare Hedbergella holmdelensis and Hedbergella monmouthensis, possibly attributable to the lowermost Paleocene Zone P0. The substantial thickness of the uppermost Maastrichtian Micula prinsii (CC26) nannofossil Zone and the lowermost Danian Parvularugoglobigerina eugubina (Palpha) foraminiferal Zone suggested that the K/P boundary was rather expanded compared to the majority of deep-sea sites (see Bralower, Premoli Silva, Malone, et al., 2002, doi:10.2973/odp.proc.ir.198.2002). This data report concerns the planktonic foraminiferal biostratigraphy across the K/P boundary in Hole 1209C, the shallowest site (2387 m water depth), and in Hole 1211C, the deepest site (2907 m water depth), where the foraminiferal record across the boundary appeared to be best preserved.