873 resultados para 175-1083B
Resumo:
Planktonic foraminiferal assemblages from the upper Pleistocene part of Hole 1087A (0 to 12.1 meters below seafloor) are investigated to assess the role of global and local climate changes on surface circulation in the southern Benguela region. The benthic stable isotope record indicates that the studied interval is representative of the last four climatic cycles, that is, down to marine isotope Stage (MIS) 12. The species assemblages bear a clear transitional to subpolar character, with Neogloboquadrina pachyderma (d), Globorotalia inflata, and Globigerina bulloides, in order of decreasing abundance, as the dominant taxa. This species association presently characterizes the mixing domain of old upwelled and open ocean waters, seaward of the Benguela upwelling cells. Abundance variation of the dominant foraminiferal species roughly follows a glacial-interglacial pattern down to MIS 8, suggesting an alternation of upwelling strength and associated seaward extension of the belt of upwelled water as a response to global climate changes. This pattern is interrupted from ~250 ka down to MIS 12, where the phase relationship with global climate is ill defined and might be interpreted as a local response of the southern Benguela region to the mid-Brunhes event. Of particular interest is a single pulse of newly upwelled waters at the location of Site 1087 during early MIS 9 as indicated by a peak abundance of sinistral N. pachyderma (s). Variable input of warm, salty Indian Ocean thermocline waters into the southeast Atlantic, a key component of the Atlantic heat conveyor, is indicated by abundance changes of the tropical taxon Globorotalia menardii. From this tracer, we suggest that interocean exchange was hardly interrupted throughout the last 460 k.y., but was most effective at glacial terminations, particularly during Terminations I and II, as well as during the upper part of MIS 12. This maximum input of Indian Ocean waters around the southern tip of Africa is associated with the reseeding of G. menardii in the tropical Atlantic.
Resumo:
High-resolution planktonic and benthic stable isotope records from Ocean Drilling Program Site 1087 off southeast Africa provide the basis for a detailed study of glacial-interglacial (G-IG) cycles during the last 500 k.y. This site is located in the Southern Cape Basin at the boundary of the coastal upwelling of Benguela and close to the gateway between the South Atlantic and the Indian Oceans. It therefore monitors variations of the hydrological fronts associated with the upwelling system and the Atlantic-Indian Ocean interconnections, in relation to global climate change. The coldest period of the last 500 k.y. corresponds to marine isotope Stage (MIS) 12, when surface water temperature was 4°C lower than during the last glacial maximum (LGM) as recorded by the surface-dwelling foraminifer Globigerinoides ruber. The warmest periods occurred during MISs 5 and 11, a situation slightly different to that observed at Site 704, which is close to the Polar Front Zone, where there is no significant difference between the interglacial stages for the past 450 k.y., except the long period of warmth during MIS 11. The planktonic and benthic carbon isotope records do not follow the G-IG cycles but show large oscillations related to major changes in the productivity regime. The largest positive 13C excursion between 260 and 425 ka coincides with the global mid-Brunhes event of carbonate productivity. The oxygen and carbon isotopic gradients between surface and deep waters display long-term changes superimposed on rapid and high-frequency fluctuations that do not follow the regular G-IG pattern; these gradients indicate modifications of the temperature, salinity, and productivity gradients due to changes in the thermocline depth, the position of the hydrological fronts, and the strength of the Benguela Current.
Resumo:
Lipid compositions of sediments recovered during Ocean Drilling Program Leg 175 in the eastern South Atlantic reflect a variety of oceanographic and climatological environments. Most of the identified lipids can be ascribed to marine sources, notably haptophytes, eustigmatophytes, dinoflagellates, archaea, and diatoms. Elevated concentrations of cholesterol suggest zooplankton herbivory, characteristic for sites influenced by upwelling. At these sites, sulfurized highly branched isoprenoids from diatoms are also present in high amounts. Sterols, sterol ethers, hopanoids, and midchain hydroxy fatty acids could also be detected. Terrigenous lipids are n-alkanes, fatty acids, n-alcohols, and triterpenoid compounds like taraxerol and -amyrine. n-Alkanes, fatty acids, and n-alcohols are derived from leaf waxes of higher land plants and transported to the sea by airborne dust or fresh water. Triterpenoid compounds are most probably derived from mangroves and transported solely by rivers. Lipid compositions below the Congo low-salinity plume are strongly influenced by terrigenous material from the Congo River. Elevated organic carbon contents and predominantly marine lipid distributions at the Angola margin may indicate a highly productive plankton population, probably sustained by the Angola Dome. Sedimentary lipids in the Walvis Basin contain an upwelling signal, likely transported by the Benguela Current. Sedimentary lipids off Lüderitz Bay and in the southern Cape Basin are dominated by plankton lipids in high to intermediate amounts, reflecting persistent and seasonal upwelling, respectively.
Resumo:
We present sediment magnetic and chemical analysis of cyclic ocean sediments of the upwelling region of the Lower Congo Basin (equatorial Atlantic). We investigated two >100-k.y. intervals from Ocean Drilling Program Site 1075 to analyze the hysteresis properties, sources of magnetic susceptibility, anhysteretic remanent magnetizations, thermomagnetic behavior, and element concentrations of Fe, Ca, Ti, Mn, and K using an X-ray fluorescence (XRF) core scanner. The upper interval was sampled between 14 and 32 meters composite depth (mcd; 0.09-0.21 Ma) and the lower between 141 and 163 mcd (1.31-1.54 Ma) at a resolution of 20 cm, which represents a temporal resolution of 2.0 and 1.3 k.y., respectively. XRF core-scanner data were acquired at 5-cm intervals. The measurements show that ferri(o)magnetic minerals have no significant influence on the cyclicity of the magnetic susceptibility, which is dominated by paramagnetic and diamagnetic minerals and reflects changes of sediment input from the Congo River. The Fe, Ti, K, and Mn concentrations covary with the magnetic susceptibility where high concentrations of these elements correlate with intervals of high susceptibility and low concentrations with intervals of low susceptibility. The Ca counts correlate well with the calcium carbonate concentration but do not show the same cyclicity as the other elements or the susceptibility. With the exception of the Ca concentration, which is significantly higher in the upper interval, and the magnetic grain size, which indicates that less fine grained magnetite is present in the lower interval, no significant differences in the properties of the upper and the lower intervals were detected.
Resumo:
Site 1085 is located on the continental rise of southwest Africa at a water depth of 1713 m off the mouth of the Orange River in the Cape Basin. The site is part of the suite of locations drilled during Leg 175 on the Africa margin to reconstruct the onset and evolution of the elevated biological productivity associated with the Benguela Current upwelling system (Wefer, Berger, Richter, et al., 1998, doi:10.2973/odp.proc.ir.175.1998). Three sediment samples were collected per section from Cores 170-1085A-28H through 45X (251-419 mbsf) to provide a survey of the sediment record of paleoproductivity from the middle late Miocene to the early Pliocene (~8.7-4.7 Ma), which is a period that includes the postulated northward migration and intensification of the Benguela Current and the establishment of modern circulation off southwest Africa (Siesser, 1980; Diester-Haass et al., 1992; Berger et al., 1998). Core 170-1085A-30H (270-279 mbsf) had essentially no recovery; this coring gap was filled with samples from Cores 170-1085B-29H and 30H (261-280 mbsf). The results of measurements of multiple paleoproductivity proxies are summarized in this report. Included in these proxies are the radiolarian, foraminiferal, and echinoderm components of the sand-sized sediment fraction. Opal skeletons of radiolarians (no diatoms were found) relate to paleoproductivity and water mass chemistry (Summerhayes et al., 1995, doi:10.1016/0079-6611(95)00008-5; Lange and Berger, 1993, doi:10.2973/odp.proc.sr.130.011.1993; Nelson et al., 1995, doi:10.1029/95GB01070). The accumulation rates of benthic foraminifers are useful proxies for paleoproductivity (Herguera and Berger, 1991, doi:10.1130/0091-7613(1991)019<1173:PFBFAG>2.3.CO;2; Nees, 1997, doi:10.1016/S0031-0182(97)00012-6; Schmiedl and Mackensen, 1997, doi:10.1016/S0031-0182(96)00137-X) because these fauna subsist on organic matter exported from the photic zone. Echinoderms also depend mainly on food supply from the photic zone (Gooday and Turley, 1990), and their accumulation rates are an additional paleoproductivity proxy. Concentrations of calcium carbonate (CaCO3) and organic carbon in sediment samples are fundamental measures of paleoproductivity (e.g., Meyers, 1997, doi:10.1016/S0146-6380(97)00049-1). In addition, organic matter atomic carbon/nitrogen (C/N) ratios and delta13C values can be used to infer the origin of the organic matter contained within the sediments and to explore some of the factors affecting its preservation and accumulation (Meyers, 1994, doi:10.1016/0009-2541(94)90059-0).
Resumo:
An astronomically calibrated age model for the Pliocene section of Ocean Drilling Program Leg 175 Cape Basin Site 1085 based on magnetic susceptibility data was developed using shipboard biostratigraphic datums. The composite core magnetic susceptibility record was compiled using shipboard correlations between Holes 1085A and 1085B and then tuned to the record of orbital variations in eccentricity to generate an orbitally tuned age model. Magnetic susceptibility apparently records climate variations in the Cape Basin. Strong power spectra values at the 100- and 400-k.y. frequency suggest an orbital control on the beat of Pliocene climate change in the Cape Basin.