573 resultados para 171-1051B
Resumo:
A continuous age model for the brief climate excursion at the Paleocene-Eocene boundary has been constructed by assuming a constant flux of extraterrestrial 3He (3He[ET]) to the seafloor. 3He[ET] measurements from ODP Site 690 provide quantitative evidence for the rapid onset (
Resumo:
The iterative evolutionary radiation of planktic foraminifers is a well-documented macroevolutionary process. Here we document the accompanying size changes in entire planktic foraminiferal assemblages for the past 70 My and their relationship to paleoenvironmental changes. After the size decrease at the Cretaceous/Paleogene (K/P) boundary, high latitude assemblages remained consistently small. Size evolution in low latitudes can be divided into three major phases: the first is characterized by dwarfs (65-42 Ma), the second shows moderate size fluctuations (42-14 Ma), and in the third phase, planktic foraminifers have grown to the unprecedented sizes observed today. Our analyses of size variability with paleoproxy records indicate that periods of size increase coincided with phases of global cooling (Eocene and Neogene). These periods were characterized by enhanced latitudinal and vertical temperature gradients in the oceans and high diversity (polytaxy). In the Paleocene and during the Oligocene, the observed (minor) size changes of the largely low-diversity (oligotaxic) assemblages seem to correlate with productivity changes. However, polytaxy per se was not responsible for larger test sizes.
Resumo:
Oxygen and carbon isotope records are important tools used to reconstruct past ocean and climate conditions, with those of benthic foraminifera providing information on the deep oceans. Reconstructions are complicated by interspecies isotopic offsets that result from microhabitat preferences (carbonate precipitation in isotopically distinct environments) and vital effects (species-specific metabolic variation in isotopic fractionation). We provide correction factors for early Cenozoic benthic foraminifera commonly used for isotopic measurements (Cibicidoides spp., Nuttallides truempyi, Oridorsalis spp., Stensioina beccariiformis, Hanzawaia ammophila, and Bulimina spp.), showing that most yield reliable isotopic proxies of environmental change. The statistical methods and larger data sets used in this study provide more robust correction factors than do previous studies. Interspecies isotopic offsets appear to have changed through the Cenozoic, either (1) as a result of evolutionary changes or (2) as an artifact of different statistical methods and data set sizes used to determine the offsets in different studies. Regardless of the reason, the assumption that isotopic offsets have remained constant through the Cenozoic has introduced an 1-2°C uncertainty into deep sea paleotemperature calculations. In addition, we compare multiple species isotopic data from a western North Atlantic section that includes the Paleocene-Eocene thermal maximum to determine the most reliable isotopic indicator for this event. We propose that Oridorsalis spp. was the most reliable deepwater isotopic recorder at this location because it was best able to withstand the harsh water conditions that existed at this time; it may be the best recorder at other locations and for other extreme events also.
Resumo:
Barite accumulation rates (BAR) have been measured from 12 DSDP/ODP site globally (DSDP site 525, 549 and ODP site 690, 738, 1051, 1209, 1215, 1220, 1221, 1263,1265 and 1266A) to reconstruct the export production across Paleocene Eocene Thermal Maximum (PETM) around 55.9 million year ago. Our results suggesting a general increase in export productivity. We propose that changes in marine ecosystems, resulting from high atmospheric partial pressure of CO2 and ocean acidification, led to enhanced carbon export from the photic zone to depth, thereby increasing the efficiency of the biological pump. We estimate that an annual carbon export flux out of the euphotic zone and into the deep ocean waters could have amounted to about 15 Gt during the PETM. About 0.4% of this carbon is expected to have entered the refractory dissolved organic pool, where it could be sequestered from the atmosphere for tens of thousands of years. Our estimates are consistent with the amount of carbon redistribution expected for the recovery from the PETM.