106 resultados para 1241
Resumo:
This thesis examines the closure history of the Central American Seaway (CAS) and its effect on changes in ocean circulation and climate during the time interval from ~6 - 2.5 Ma. It was accomplished within the DFG Research Unit "Impact of Gateways on Ocean Circulation, Climate and Evolution" at the University of Kiel. Proxy records from Ocean Drilling Program (ODP) Sites 999 and 1000 (Caribbean), and from ODP Sites 1237, 1239 and 1241 (low-latitude east Pacific) are developed and examined. In addition, previously established proxy data from Atlantic Sites 925/926 (Ceara Rise) and 1006 (western Great Bahama Bank) and from two east Pacific sites (851, 1236) are included for interpretations. The main objectives of this study are (1) to acquire a consistent stratigraphic framework for all sites, (2) to reconstruct Pliocene changes in Caribbean and tropical east Pacific upper ocean water masses (i.e. temperature, salinity, thermocline depth), and (3) to identify potential underlying forcing mechanisms.
Resumo:
We present benthic isotope stratigraphies for Sites 1236, 1237, 1239, and 1241 that span the late Miocene-Pliocene time interval from 6 to 2.4 Ma. Orbitally tuned timescales were generated for Sites 1237 and 1241 by correlating the high-frequency variations in gamma ray attenuation density, percent sand of the carbonate fraction, and benthic d13C to variations in Earth's orbital parameters. The astronomical timescales for Sites 1237 and 1241 are in agreement with the one from Atlantic Site 925/926 (Ocean Drilling Program Leg 154). The comparison of benthic d18O and d13C records from the east Pacific sites and Atlantic Site 925/926 revealed a surprising clarity of the "41-k.y. signal" in d13C records and a remarkably good correlation between their d13C records. This suggests that the late Miocene-Pliocene amplitudes of obliquity-related d13C cycles reflect a magnitude of global response often larger than that provided by obliquity-related d18O cycles. At Site 1237, the orbitally derived ages of Pliocene magnetic reversal boundaries between the base of Réunion and the top of Thvera confirm astronomical datings of the generally accepted ATNTS2004 timescale, except for the top of Kaena and the base of Sidufjall. Our astronomical age for the top of Kaena is about one obliquity cycle older. The base of Sidufjall appears to be about one precession cycle younger. The age models of Sites 1236 and 1239 were established by correlating their benthic d18O and d13C records directly to the orbitally tuned isotope record of Site 1241.
Resumo:
During Ocean Drilling Program (ODP) Leg 202, Pleistocene calcareous nannofossils were recovered from several sites situated between 16°S and 8°N latitude. These sites are under the influence of coastal or equatorial upwelling and offer the opportunity to refine biostratigraphic patterns using alternative events from those used in "standard" zonations (Martini, 1971; Okada and Bukry, 1980, doi:10.1016/0377-8398(80)90016-X). Differences in the positions of the studied sites determine changes in sedimentation rates, which range from ~0.8 to 6 cm/k.y. (Shipboard Scientific Party, 2003, doi:10.2973/odp.proc.ir.202.101.2003). These differences are due to the proximity to the continent and to organic production.
Resumo:
We use digital seismic reflection profiles within a 1° * 1° survey area on the Cocos Ridge (COCOS6N) to study the extent and timing of sedimentation and sediment redistribution on the Cocos Ridge. The survey was performed to understand how sediment focusing might affect paleoceanographic flux measurements in a region known for significant downslope transport. COCOS6N contains ODP Site 1241 to ground truth the seismic stratigraphy, and there is a seamount ridge along the base of the ridge that forms a basin (North Flank Basin) to trap sediments transported downslope. Using the Site 1241 seismic stratigraphy and densities extrapolated from wireline logging, we document mass accumulation rates (MARs) since 11.2 Ma. The average sediment thickness at COCOS6N is 196 m, ranging from outcropping basalt at the ridge crest to ~ 400 m at North Flank Basin depocenters. Despite significant sediment transport, the average sedimentation over the entire area is well correlated to sediment fluxes at Site 1241. A low mass accumulation rate (MAR) interval is associated with the 'Miocene carbonate crash' interval even though COCOS6N was at the equator at that time and relatively shallow. Highest MAR occurs within the late Miocene-early Pliocene biogenic bloom interval. Lowest average MAR is in the Pleistocene, as plate tectonic motions caused COCOS6N to leave the equatorial productivity zone. The Pliocene and Pleistocene also exhibit higher loss of sediment from the ridge crest and transport to North Flank Basin. Higher tidal energy on the ridge caused by tectonic movement toward the margin increased sediment focusing in the younger section.