954 resultados para 119-742A
Resumo:
Leg 119 of the Ocean Drilling Program (ODP) provided the first opportunity to study the interstitial-water chemistry of the eastern Antarctic continental margin. Five sites were cored in a northwest-southeast transect of Prydz Bay that extended from the top of the continental slope to within 30 km of the coastline. Geological studies of the cores reveal a continental margin that has evolved through terrestrial, glacial, and glacial-marine environments. Chemical and stable isotopic analyses of the interstitial-waters were performed to determine the types of depositional environments and the diagenetic and hydrologic processes that are operating in this unusual marine environment. Highly compacted glacial sediments provide an effective barrier to the vertical diffusion of interstitial-water solutes. Meteoric water from the Antarctic continent appears to be flowing into Prydz Bay sediments through the sequence of terrestrial sediments that lie underneath the glacial sediments. The large amounts of erosion associated with glacial advances appear to have had the effect of limiting the amount of marine organic matter that is incorporated into the sediments on the continental shelf. Although all of the sites cored in Prydz Bay exhibit depletions in dissolved sulfate with increasing depth, the greatest bacterial activity is associated with a thin layer of diatom ooze that coats the seafloor of the inner bay. Results of alkalinity modeling, thermodynamic calculations, and strontium analyses indicate that (1) ocean bottom waters seaward of Site 740 are undersaturated with respect to both calcite and aragonite, (2) interstitial waters at each site become saturated or supersaturated with respect to calcite and aragonite with increasing depth, (3) precipitation of calcium carbonate reduces the alkalinity of the pore waters with increasing depth, and (4) recrystallization of aragonite to calcite accounts for 24% of the pore-water strontium. Weathering of unstable terrestrial debris and cation exchange between clay minerals and pore fluids are the most probable chemical processes affecting interstitial water cation gradients.
Resumo:
High molecular weight aliphatic hydrocarbons were extracted from sediments at two sites (741 and 742) drilled during Ocean Drilling Program Leg 119 in Prydz Bay, a major embayment on the continental shelf of East Antarctica. The distributions of n-alkanes and triterpenoid and steroid hydrocarbons suggest that the n-alkanes and steranes are mainly of terrestrial origin and that the hydrocarbons are immature to slightly mature in the Lower Cretaceous sediments and immature to mature in the Tertiary sediments. At Site 741, the Lower Cretaceous depositional sequence, which is generally characterized by immature hydrocarbons, is interrupted by sediment having more mature components, suggesting a change of source during part of Early Cretaceous time. At Site 742, the mature geochemical parameters of a Pliocene sample correlate with results reported elsewhere for Site 739. In all but one of the other Tertiary samples, the geochemical parameters indicate intermediate maturity. The Lower Cretaceous and Pliocene sediments average about 1.9% organic carbon, a value of interest from the point of view of potential sources of petroleum offshore from Antarctica.
Resumo:
This paper presents a geotechnical characterization of the glacigenic sediments in Prydz Bay, East Antarctica, based on the shipboard physical properties data obtained during Leg 119, combined with results of land-based analyses of 24 whole-round core samples. Main emphasis is placed on the land-based studies, which included oedometer consolidation tests, triaxial and simple shear tests for undrained shear strength, permeability tests in oedometer and triaxial cell, Atterberg limits, and grain-size analyses. The bulk of the tested sediments comprise overconsolidated diamictites of a relatively uniform lithology. The overconsolidation results from a combination of glacial loading and sediment overburden subsequently removed by extensive glacial erosion of the shelf. This leads to downhole profiles of physical properties that have been observed not to change as a function of the thickness of present overburden. A number of fluctuations in the parameters shows a relatively systematic trend and most likely results from changes in the proximity to the ice sheet grounding line in response to variations in the glacial regime. Very low permeabilities mainly result from high preconsolidation stresses (Pc'). Pc' values up to 10,000 kPa were estimated from the oedometer tests, and empirical estimates based on undrained shear strengths (up to 2500 kPa) indicate that the oedometer results are conservative. The diamictites generally classify as inactive, of low to medium plasticity, and they consolidate with little deformation, even when subjected to great stresses. This is the first report of geotechnical data from deep boreholes on the Antarctic continental shelf, but material of similar character can also be expected in other areas around the Antarctic.
Resumo:
A series of samples from the five sites drilled across the continental shelf and upper slope in Prydz Bay during ODP Leg 119 were consolidation tested in an oedometer. Preconsolidation stresses increase downcore at Sites 739 and 742 in a stepwise manner, and the steps are interpreted to represent periods of increased action of grounded glaciers covering the entire shelf. By the use of theoretical ice sheet surface profiles giving the range of possible ice thicknesses, sediment loading and subsequent erosion seem to be the most important factor for increasing the overconsolidation ratios, and a total glacial erosion exceeding 1 km is possible. Four separate steps in consolidation, here termed "load events" have been identified. The lowermost load event, 1, is correlated to the onset of glaciations reaching the shelf edge and an early period of extensive glaciations, starting in early Oligocene or possibly earlier. Glacial activity related to the buildup of ice in West Antarctica in the late Miocene is tentatively correlated to load event 2. Event 3 is the trace of relatively extensive glacial erosion probably in the Pliocene, whereas the upper step in preconsolidation stress, load event 4, results from the last glaciation reaching the shelf edge, possibly during the late Weichselian. Correlations to other data related to Antarctic glacial history are, however, hampered by the poor age control of the cored diamictites. Consolidation tests may provide a tool for finding the position for hiatuses and unconformities formed subglacially and obscured by subglacial reworking.
Resumo:
A prominent middle Eocene warming event is identified in Southern Ocean deep-sea cores, indicating that long-term cooling through the middle and late Eocene was not monotonic. At sites on Maud Rise and the Kerguelen Plateau, a distinct negative shift in d18O values (~1.0 per mil) is observed ca. 41.5 Ma. This excursion is interpreted as primarily a temperature signal, with a transient warming of 4°C over 600 k.y. affecting both surface and middle-bathyal deep waters in the Indian-Atlantic region of the Southern Ocean. This isotopic event is designated as the middle Eocene climatic optimum, and is interpreted to represent a significant climatic reversal in the midst of middle to late Eocene deep-sea cooling. The lack of a significant negative carbon isotope excursion, as observed during the Paleocene-Eocene thermal maximum, and the gradual rate of high-latitude warming suggest that this event was not triggered by methane hydrate dissociation. Rather, a transient rise in pCO2 levels is suspected, possibly as a result of metamorphic decarbonation in the Himalayan orogen or increased ridge/arc volcanism during the late middle Eocene.