575 resultados para 117-726A
Resumo:
Interstitial water analyses made at 12 sites during Leg 117 are used to define the nature of diagenetic reactions in organic-rich sediments on the Owen Ridge and Oman Margin. Minor variations in chloride concentration profiles are ascribed to past changes in bottom water salinity at two mid-depth margin sites and to upward migration of low salinity water at another. There is no evidence for subsurface brine movement, unlike the case on the Peru Margin. Dolomitization is widespread and accounts for the depletions of magnesium observed in pore waters at variable depths at nearly all sites. The mineral occurs both as disseminated euhedral limpid crystals and, in at least one location, in massive stringers. Formation of the latter is suggested to reflect precipitation during sea level transgressions when the sedimentation rate was low, but when productivity was high. Authigenic carbonate fluorapatite is also widespread, the phosphorus being derived from the breakdown of organic matter. Sulfate is quantitatively depleted at depth at most locations but the rate of depletion is markedly less than that observed on the Peru Margin where sedimentation is also similarly influenced by high rates of upwelling. The reason for this contrast is not clear and merits further investigation.
Resumo:
Petrographical and geochemical studies of Neogene marine sediments from the Oman Sea (Leg 117, Sites 720, 724, 726 and 730), show a close relationship between the nature and amount of the organic matter, and the degree of degradation of organic matter by sulfate reduction, i.e. pyritization. Petrographically, three major pyritization types were observed: (1) Finely dispersed pyrite framboids in sediments from Oman Margin and Indus Fan, enriched in autochthonous marine organic matter. (2) Infilling of pores by massive pyrite crystals in Oman Margin sediments with a low TOC and a high microfossil content. (3) Pyrite mineralization of lignaceous fragments in organic-depleted sediments from the Indus Fan leading to more massive pyrite. Geochemically, we can define a sulfate reduction index (SRI) as the percentage of initial organic carbon versus that of residual organic carbon. Finely laminated Pliocene-Pleistocene sediments from the Oman Margin exclusively contain organic matter deriving from organic phytoplankton, for which the quantity (TOC) positively correlates with the geochemical quality (Hydrogen Index). We think that the occurrence of this residual organic matter is linked mainly to a high primary paleo-productivity. The intensity of sulfate reduction is constant for sediments with TOC up to 2% and becomes more important when organic input decreases. This degradation process can destroy up to 50% of the initial organic matter, but is not sufficient to explain some of the encountered very low TOC values. It can be seen that sharp increases of certain plankton species (with mineral skeletons) are responsible for a pronounced degradation of organic matter, due to increased sulfate reduction. In that case, the organic matter may be strongly degraded (high SRI), although deposited in an oxygen-depleted environment. Conversely, Miocene-Pliocene sediments contain an autochthonous organic matter that is typical of both low productivity and oxic processes; their very low sulfate reduction index indicates that very little metabolizable organic matter was initially present.
Resumo:
Total organic carbon, amino compounds, and carbohydrates were measured in pore waters and sediments of Pliocene to Pleistocene age from Sites 723 and 724 (ODP Leg 117) to evaluate (1) relationships between organic matter in the sediment and in the pore water, (2) the imprint of lithological variations on the abundance and contribution of organic substances, (3) degradation of amino compounds and carbohydrates with time and/or depth, and (4) the dependence of the ammonia concentration in the pore water on the degradation of amino compounds in the sediment. Total organic carbon concentrations (TOC) of the investigated sediment samples range from 0.9% to 8.7%, and total nitrogen concentrations (TN) from 0.1% to 0.5%. Up to 4.9% of the TOC is contributed by hydrolyzable amino acids (THAA) which are present in amounts between 1.1 and 21.3 µmol/g dry sediment and decrease strongly downhole. Hydrolyzable carbohydrates (THCHO) were found in concentrations from 1.3 to 6.6 ?mol/g sediment constituting between 0.1% and 2.0% of the TOC. Differences between the distribution patterns of monomers in Sites 723 and 724 indicate higher terrigenous influence for Site 724 and, furthermore, enhanced input of organic matter that is relatively resistant to microbial degradation. Lithologically distinct facies close to the Pliocene/Pleistocene boundary yield different organic matter compositions. Laminated horizons seem to correspond with enhanced amounts of biogenic siliceous material and minor microbiological degradation. Total amounts of dissolved organic carbon (DOC) in pore waters vary between 11 and 131 mg/L. Concentrations of DOC as well as of dissolved amino compounds and carbohydrates appear to be related to microbial activity and/or associated redox zones and not so much to the abundance of organic matter in the sediments. Distributions of amino acids and monosaccharides in pore waters show a general enrichment in relatively stable components in comparison to those of the sediments. Nevertheless, the same trend appears between amino acids present in the sediments from Sites 723 and 724 as well as between amino acids in pore waters from these two sites, indicating a direct relation between the dissolved and the sedimentary organic fractions. Different ammonia concentrations in the pore waters of Sites 723 and 724 seem to be related to enhanced release of ammonia from degradation of amino compounds in Site 723.