629 resultados para 115-706
Resumo:
Pelagic sediments from DSDP Hole 5O3B contain, in their carbonate abundance data, a clear record of glacial-interglacial cycles. The eolian component of those sediments was analyzed over the past four carbonate cycles, and the mass accumulation rate (MAR) and grain size of the eolian component was determined. Eolian MARs range from 24 to 169 mg/cm**2/10**3y. and commonly are higher by a factor of three to five during times of glacial retreat. Reduced contribution during periods of glaciation most likely reflects glacial-age humidity in the American source. Grain-size values (phi50) range from 8.25 to a minimum of 8.79phi-a variation in grain mass by a factor of 3.1. Larger grains reflect more vigorous atmospheric circulation, but sizes do not covary with the carbonate or eolian accumulation curves. These data suggest that the intensity of atmospheric circulation in the tropics may reflect the 42,000 y.-tilt cycle rather than the 100,000 y.-cycle of glacial advance.
Resumo:
An Eocene-Oligocene calcareous nannofossil biostratigraphic framework for Ocean Drilling Program (ODP) Site 748 in the southern Indian Ocean is established, which provides a foundation for this and future quantitative biogeographic studies. This biostratigraphic analysis, together with quantitative nannofossil data, enables a reinterpretation of the preliminary magnetostratigraphy and a new placement for magnetic Subchron CBN in the lowermost Oligocene. Calcareous nannofossil species diversity is low at Site 748 relative to lower latitude sites, with about 13 taxa in the middle Eocene, gradually decreasing to about 6 in the late Oligocene. There is, however, no apparent mass extinction at any stratigraphic level. Similarly, no mass extinctions were recorded at or near the Eocene/Oligocene boundary at Site 711 in the equatorial Indian Ocean. Species diversity at the equatorial site is significantly higher than at Site 748, with a maximum of 39 species in the middle Eocene and a minimum of 14 species in the late Oligocene. The abundance patterns of nannofossil taxa are also quite different at the two sites, with chiasmoliths, Isthmolithus recurvus, and Reticulofenestra daviesii abundant and restricted to the high-latitude site and Coccolithus formosus, discoasters, and sphenoliths abundant at the equatorial site but impoverished at the high-latitude site. This indicates a significant latitudinal biogeographic gradient between the equatorial site and the high-latitude site in the Indian Ocean for the middle Eocene-Oligocene interval. The abundance change of warm-water taxa is similar to that of species diversity at Site 711. There is a general trend of decreasing abundance of warm-water taxa from the middle Eocene through the early Oligocene at Site 711, suggesting a gradual cooling of the surface waters in the equatorial Indian Ocean. The abundance of warm-water taxa increased in the late Oligocene, in association with an increase in species diversity, and this may reflect a warming of the surface waters in the late Oligocene. An abrupt increase in the abundance of cool-water taxa (from ~20% to over 90%) occurred from 36.3 to 35.9 Ma at high-latitude Site 748. Coincident with this event was a ~1.0 per mil positive shift in the delta18O value of planktonic foraminifers and the occurrence of ice-rafted debris. This abrupt change in the nannofossil population is a useful biostratigraphic event for locating the bottom of magnetic Subchron C13N in the Southern Ocean. The sharp increase in cool-water taxa coeval with a large positive shift in delta18O values suggests that the high-latitude surface waters drastically cooled around 36.3-35.9 Ma. The temperature drop is estimated to be 4°C or more at Site 748 based on the nannofossil population change relative to the latitudinal biogeographic gradient established in the South Atlantic Ocean during previous studies. Consequently, much of the delta18O increase at Site 748 appears to be due to a temperature drop in the high latitudes rather than an ice-volume signal. The ~0.1 per mil delta18O increase not accounted for by the temperature drop is attributed to an ice-volume increase of 4.6 * 10**3 km**3, or 20% the size of the present Antarctic ice sheet.
Resumo:
Shallow-water larger foraminifers have been recovered at two drill sites on the eastern Maldive Ridge. Despite the poor recovery in Hole 715A, a rather diversified larger benthic foraminifer assemblage allowed us to date the initiation of a carbonate platform, resting on volcanic basement, as late early Eocene. Several age-diagnostic species belonging to the genera Alveolina, Nummulites, Orbitolites, and Discocyclina have been identified. The assemblages may be attributable to the upper part of the Nummulites burdigalensis cantabricus Zone and/or to the lower part of the Nummulites campesinus Zone and to the Alveolina dainellii (upper part) and/or to the A. violae (lower part) zones. The carbonate platform had a very short life (a few hundred thousand years) and rapidly sank below the euphotic zone, as testified by the occurrence of several species of planktonic foraminifers associated with redeposited reef-derived skeletal debris, especially discocyclinids, in the upper part of the sequence. Among the planktonic foraminifers, the presence of Planorotalites palmeri, which has a range confined to the lower portion of the late early Eocene Zone P9, implies that the platform was drowned before the end of the early Eocene. At Hole 714A, the occurrence of several shallow-water foraminifer genera, such as Nummulites (N. fabianii gr.), Discocyclina, Fabiania, Heterostegina, and Operculina (O. gomezi), in pebbles derived from turbidite beds interbedded within late Oligocene pelagic sediments, allows us to suggest that a carbonate platform, possibly reduced in size, was still growing in the Maldive Ridge area after the late early Eocene time. The erosional event, responsible for the redeposition of middle to late Eocene reef-derived skeletal debris, is apparently coeval with the global sea-level fall recorded in late Oligocene Zone P22.
Resumo:
Synthetic mass accumulation rates have been calculated for ODP Site 707 using depth-density and depth-porosity functions to estimate values for these parameters with increasing sediment thickness, at 1 Ma time intervals determined on the basis of published microfossil datums. These datums were the basis of the age model used by Peterson and Backman (1990, doi:10.2973/odp.proc.sr.115.163.1990) to calculate actual mass accumulation rate data using density and porosity measurements. A comparison is made between the synthetic and actual mass accumulation rate values for the time interval 37 Ma to the Recent for 1 Myr time intervals. There is a correlation coefficient of 0.993 between the two data sets, with an absolute difference generally less than 0.1 g/cm**2/kyr. We have used the method to extend the mass accumulation rate analysis back to the Late Paleocene (60 Ma) for Site 707. Providing age datums (e.g. fossil or magnetic anomaly data) are available the generation of synthetic mass accumulation rates can be calculated for any sediment sequence.