122 resultados para 1099
Resumo:
This paper provides a snapshot of the permafrost thermal state in the Nordic area obtained during the International Polar Year (IPY) 2007-2009. Several intensive research campaigns were undertaken within a variety of projects in the Nordic countries to obtain this snapshot. We demonstrate for Scandinavia that both lowland permafrost in palsas and peat plateaus, and large areas of permafrost in the mountains are at temperatures close to 0°C, which makes them sensitive to climatic changes. In Svalbard and northeast Greenland, and also in the highest parts of the mountains in the rest of the Nordic area, the permafrost is somewhat colder, but still only a few degrees below the freezing point. The observations presented from the network of boreholes, more than half of which were established during the IPY, provide an important baseline to assess how future predicted climatic changes may affect the permafrost thermal state in the Nordic area. Time series of active-layer thickness and permafrost temperature conditions in the Nordic area, which are generally only 10 years in length, show generally increasing active-layer depths and rising permafrost temperatures.
Resumo:
Distributions of rare earth element contents in surface layer bottom sediments, in vertical sediment section, and in Fe-Mn nodules of the Black Sea have been studied. An inverse relationship of rare earth element contents and CaCO3 contents has been found in the studied sediments. Fe-Mn nodules of the Black Sea do not concentrate rare earth elements, and their rare earth element composition differs from one of host sediments. It is concluded that rare earth elements are bound with clay minerals of bottom sediments.
Resumo:
The routine use of spectrophotometry on the sediment surfaces of archive halves of each section during the onboard sedimentological core description process is a great stride toward development of real-time noninvasive characterization of deep-sea sediments. Spectral reflectance data have been used so far for mineral composition studies as well as for lithostratigraphic correlation between sites (Balsam and Deaton, 1991; Balsam et al., 1997; Mix et al., 1995; Ortiz et al., 1999). Their results demonstrate that spectrophotometry can estimate CaCO3 content by using the 4.65-, 5.25-, and 5.55-µm wavelength spectrums. A detailed overview of various other noninvasive methods is given in Ortiz and Rack (1999). The purpose of this study is to test whether spectrophotometry in the visible band can be used as a tool to gather further information about grain-size variation, sorting, compaction, and porosity, which are directly linked to the sedimentation process. From remote sensing data analyses, it is known that diffuse spectral reflectance data in the visible band in the wavelength window of 7.0-6.5 µm are sensitive to grain-size variations. It appears that a relationship between grain size and signal absorption exists only in this wavelength window. (e.g., Clark, 1999; Gaffey, 1986; Gaffey et al., 1993). Variations in grain size during a sedimentation process are linked to depositional energy, which affects sorting, compaction, and porosity of sediment deposits. As an example, we study here the spectrophotometric data of the sedimentary sequence of Hole 1098C, which was deposited under widely varying environmental conditions. Alternating turbidite and finely laminated sediments were recovered from Hole 1098C. The turbidites are related to a high depositional energy environment; the finely laminated sediments are related to a low depositional energy environment. Data from Hole 1098C were therefore used to test whether the spectral reflectance data can provide a proxy for these different depositional environments.