371 resultados para 105-645E
Resumo:
The shapes and surface textures of sand-sized quartz grains from the sediments cored at Site 645 in southern Baffin Bay during ODP Leg 105 were studied to characterize the terrigenous materials and the settling processes involved in the deposition of these sediments. Here, we show a homogeneous sand fraction that results from mixing grains from various provenances. The characteristics inherited from terrestrial processes (varying degrees of wear; fluviatile, aeolian, and diagenetic features) dominate the characteristics that result from evolution in a high-energy marine environment. Thus, the influence of the last stage of sedimentation in a deep-marine environment was difficult to distinguish. However, fluctuations in the relative proportions of particular features reveal that the terrigenous material derived from sedimentary formations of Baffin Island and East Greenland or from direct abrasion of the crystalline shield, which changed through time as the dominant settling processes evolved. In particular, this study confirms the onset of major ice rafting as old as late Miocene.
Resumo:
Basalt samples recovered from the lowermost 37 m of Leg 105 Hole 647A in the Labrador Sea are fine- to medium grained, have microphenocrysts of clinopyroxene, and show little evidence of alteration. Chemically, these rocks are low potassium (0.01-0.09 wt% K20), olivine- to quartz-normative tholeiites that are also depleted in other incompatible elements. In terms of many of the incompatible trace elements, the Labrador Sea samples are similar both to iV-type midocean ridge basalts (MORBs) and to the terrestrial Paleocene volcanic rocks in the Davis Strait region of Baffin Island and West Greenland. However, significant differences are found in their strontium and neodymium isotope systematics. Hole 647A samples are more depleted in epsilon-Nd (+9.3) and are anomalously rich in 87Sr/86Sr (0.7040) relative to the Davis Strait basalts (epsilon-Nd +2.54 to + 8.97; mean 87Sr/86Sr, 0.7034). We conclude that the Hole 647A and Davis Strait basalts may have been derived from a similar depleted mantle source composition. In addition, the Davis Strait magmas were generated from mantle of more than one composition. We also suggest that there is no geochemical evidence from the Hole 647A samples to support or to refute the existence of foundered continental crust in the Labrador Sea.