99 resultados para åk 4-6
Resumo:
Seawater that has been altered by reaction with basaltic basement has been sampled from Deep Sea Drilling Project Hole 504B, located on 5.9-m.y.-old crust on the southern flank of the Costa Rica Rift. Fourteen water samples have been collected on Legs 69, 70, and 83, both before and after renewed drilling on the latter two legs, at temperatures from 69 to 133°C and pressures from 390 to 425 bars. The water sampled prior to renewed drilling on Leg 83 had occupied the hole for nearly 2 yr. since it was last flushed with surface seawater at the end of Leg 70. Despite some contamination by seawater during sampling, the composition of two of these waters has been determined by using nitrate as a tag for the contaminant. Both the 80 and 115°C waters have seawater chlorinity, but have lost considerable Mg, Na, K, sulfate, and 02, and have gained Ca, alkalinity, Si, NH3 and H2S. The loss of sulfate is due to anhydrite precipitation, as indicated by the d34S value of the remaining dissolved sulfate. The 87Sr/86Sr ratio has been lowered to 0.7086 for the 80°C water and 0.7078 for the 115°C water, whereas the Sr concentration is nearly unchanged. The changes in major element composition relative to seawater are also larger for the 115°C water, indicating that the basement formation water at this site probably varies in composition with depth. Based on their direction relative to seawater, the compositional changes for the 80 and 115°C waters do not complement the changes inferred for the altered rocks from Hole 504B, suggesting that the bulk composition of the altered rocks, like their mineralogy, is largely unrelated to the present thermal and alteration regime in the hole. The exact nature of the reacted seawaters cannot be determined yet, however. During its 2 yr. residence in the hole, the surface seawater remaining at the end of Leg 70 would have reacted with the wall rocks and exchanged with their interstitial formation waters by diffusion and possibly convection. How far these processes have proceeded is not yet certain, although calculations suggest that diffusion alone could have largely exchanged the surface seawater for interstitial water. The d18O of the samples is indistinguishable from seawater, however, and the d14C of the 80°C sample is similar to that of ocean bottom water. Although the interpretation of these species is ambiguous, that of tritium should not be. Tritium analyses, which are in progress, should clarify the nature of the reacted seawaters obtained from the hole.
Resumo:
Twenty routinely used nannofossil datums in the late Neogene and Quaternary were identified at three Blake Ridge sites drilled during Leg 164. The quantitative investigation of the nannofossil assemblages in 236 samples selected from Hole 994C provide new biostratigraphic and paleoceanographic information. Although mostly overlooked previously, Umbilicosphaera aequiscutum is an abundant component of the late Neogene flora, and its last occurrence at ~2.3 Ma is a useful new biostratigraphic event. Small Gephyrocapsa evolved within the upper part of Subzone CN11a (~4.3 Ma), and after an initial acme, it temporarily disappeared for 400 k.y., between 2.9 and 2.5 Ma. Medium-sized Gephyrocapsa evolved in the latest Pliocene ~2.2 Ma), and after two short temporary disappearances, common specimens occurred continuously just above the Pliocene/Pleistocene boundary. The base of Subzone CN13b should be recognized as the beginning of the continuous occurrence of medium-sized (>4 µm) Gephyrocapsa. Stratigraphic variation in abundance of the very small placoliths and Florisphaera profunda alternated, indicating potential of the former as a proxy for the paleoproductivity. At this site, it is likely that upwelling took place during three time periods in the late Neogene (6.0-4.6 Ma, 2.3-2.1 Ma, and 2.0-1.8 Ma) and also in the early Pleistocene (1.4-0.9 Ma). Weak upwelling is also likely to have occurred intermittently through the late Pliocene. Due to the sharp and abrupt turnover of the nannofossils, which resulted from an evolution of very competitive species, the paleoproductivity of the late Pleistocene is not clear. The site was mostly in an oligotrophic central gyre setting during the 4.6- to 2.3-Ma interval, intermittently between 2.1 and 1.4 Ma, and continuously for the last several tens of thousand years.