85 resultados para Évangile de Luc
Resumo:
A two year record of downward particle flux was obtained with moored sediment traps at several depths of the water column in two regions characterized by different primary production levels (mesotrophic and oligotrophic) of the eastern subtropical North Atlantic Ocean in the framework of the EUMELI program. Settling particles were collected with multisample conical sediment-traps moored at 1000 and 2500 depths in the water column. Time-series samples were obtained between February 1991 and November 1992. During this time, sampling intervals varied from 8 to 10 d and were synchronized at all depths and also between the oligotrophic and mesotrophic moorings. Sediment-trap sampling procedures were consistent with JGOF and described elsewhere. The data shown here are mass, particulate organic carbon (POC), particulate inorganic carbon (PIC), coccolithophore, opal, and lithogenic downward fluxes obtained during the entire sediment-trap deployments at both sites.
Resumo:
The present data set provides contextual environmental data for samples from the Tara Oceans Expedition (2009-2013) that were selected for publication in a special issue of the SCIENCE journal (see related references below). The data set provides calculated averages of mesaurements made at the sampling location and depth, calculated averages from climatologies (AMODIS, VGPM) and satellite products.
Resumo:
Coccolithophores, a key phytoplankton group, are one of the most studied organisms regarding their physiological response to ocean acidification/carbonation. The biogenic production of calcareous coccoliths has made coccolithophores a promising group for paleoceanographic research aiming to reconstruct past environmental conditions. Recently, geochemical and morphological analyses of fossil coccoliths have gained increased interest in regard to changes in seawater carbonate chemistry. The cosmopolitan coccolithophore Emiliania huxleyi (Lohm.) Hay and Mohler was cultured over a range of pCO2 levels in controlled laboratory experiments under nutrient replete and nitrogen limited conditions. Measurements of photosynthesis and calcification revealed, as previously published, an increase in particulate organic carbon production and a moderate decrease in calcification from ambient to elevated pCO2. The enhancement in particulate organic carbon production was accompanied by an increase in cell diameter. Changes in coccolith volume were best correlated with the coccosphere/cell diameter and no significant correlation was found between the coccolith volume and the particulate inorganic carbon production. The conducted experiments revealed that the coccolith volume of E. huxleyi is variable with aquatic CO2 concentration but its sensitivity is rather small in comparison with its sensitivity to nitrogen limitation. Comparing coccolith morphological and geometrical parameters like volume, mass and size to physiological parameters under controlled laboratory conditions is an important step to understand variations in fossil coccolith geometry.
Resumo:
The effects of CO2-induced seawater acidification on plankton communities were also addressed in a series of 3 mesocosm experiments, called the Pelagic Ecosystem CO2 Enrichment (PeECE I-III) studies, which were conducted in the Large-Scale Mesocosm Facilities of the University of Bergen, Norway in 2001, 2003 and 2005, respectively. Each experiment consisted of 9 mesocosms, in which CO2 was manipulated to initial concentrations of 190, 350 and 750 µatm in 2001 and 2003, and 350, 700 and 1050 µatm in 2005. The present dataset concerns PeECE I.
Resumo:
Proxy records of hydrologic variability in the West Pacific Warm Pool (WPWP) have revealed wide-scale changes in past convective activity in response to orbital and sub-orbital climate forcings. However, attributing proxy responses to regional changes in WPWP hydrology versus local variations in precipitation requires independent records linking the terrestrial and marine realms. We present high-resolution stable isotope, UK'37 sea-surface temperature, X-ray fluorescence (XRF) core scanning and coccolithophore-derived paleoproductivity records covering the past 120 ka from International Marine Global Change (IMAGES) Program Core MD06-3075 (6°29' N, 125°50' E, water depth 1878 m), situated in the Davao Gulf on the southern side of Mindanao. XRF-derived log(Fe/Ca) records provide a robust proxy for runoff-driven sedimentary discharge from Mindanao, whilst past changes in local productivity are associated with variable freshwater runoff and stratification of the surface layer. Significant precessional-scale variability in sedimentary discharge occurred during Marine Isotope Stage (MIS) 5, with peaks in discharge contemporaneous with Northern Hemisphere summer insolation minima. We attribute these changes to the latitudinal migration of the Intertropical Convergence Zone (ITCZ) over the WPWP together with variability in the strength of the Walker circulation acting on precessional timescales. Between 60 and 15 ka sedimentary discharge at Mindanao was muted, displaying little orbital- or millennial-scale variability, likely in response to weakened precessional insolation forcing and lower sea level driving increased subsidence of air masses over the exposed Sunda Shelf. These results highlight the high degree of local variability in the precipitation response to past climate changes in the WPWP.
Resumo:
Probabilistic climate data have become available for the first time through the UK Climate Projections 2009, so that the risk of tree growth change can be quantified. We assess the drought risk spatially and temporally using drought probabilities and tree species vulnerabilities across Britain. We assessed the drought impact on the potential yield class of three major tree species (Picea sitchensis, Pinus sylvestris, and Quercus robur) which presently cover around 59% (400,700 ha) of state-managed forests, across lowland and upland sites. Here we show that drought impacts result mostly in reduced tree growth over the next 80 years when using b1, a1b and a1fi IPCC emissions scenarios. We found a maximum reduction of 94% but also a maximum increase of 56% in potential stand yield class in the 2080s from the baseline climate (1961-1990). Furthermore, potential production over the national forest estate for all three species in the 2080s may decrease due to drought by 42% in the lowlands and 32% in the uplands in comparison to the baseline climate. Our results reveal that potential tree growth and forest production on the national forest estate in Britain is likely to reduce, and indicate where and when adaptation measures are required. Moreover, this paper demonstrates the value of probabilistic climate projections for an important economic and environmental sector.
Resumo:
We present excess Ba (Baxs) data (i.e., total Ba corrected for lithogenic Ba) for surface sediments from a north-south transect between the Polar Front Zone and the northern Weddell Gyre in the Atlantic sector and between the Polar Front Zone and the Antarctic continent in the Indian sector. Focus is on two different processes that affect excess Ba accumulation in the sediments: sediment redistribution and excess Ba dissolution. The effect of these processes needs to be corrected for in order to convert accumulation rate into vertical rain rate, the flux component that can be linked to export production. In the Southern Ocean a major process affecting Ba accumulation rate is sediment focusing, which is corrected for using excess 230Th. This correction, however, may not always be straightforward because of boundary scavenging effects. A further major process affecting excess Ba accumulation is barite dissolution during exposure at the sediment-water column interface. Export production estimates derived from excess 230Th and barite dissolution corrected Baxs accumulation rates (i.e., excess Ba vertical rain rates) are of the same magnitude but generally larger than export production estimates based on water column proxies (234Th-deficit in the upper water column; particulate excess Ba enrichment in the mesopelagic water column). We believe export production values based on excess Ba vertical rain rate might be overestimated due to inaccurate assessment of the Baxs preservation rate. Barite dissolution has, in general, been taken into account by relating it to exposure time before burial depending on the rate of sediment accumulation. However, the observed decrease of excess Ba content with increasing water column depth (or increasing hydrostatic pressure) illustrates the dependence of barite preservation on degree of saturation in the deep water column in accordance with available thermodynamic data. Therefore correction for barite dissolution would not be appropriate by considering only exposure time of the barite to some uniformly undersaturated deep water but requires also that regional differences in degree of undersatuation be taken into account.
Resumo:
We investigate the long-term stability of El Niño-Southern Oscillation and Pacific Decadal Oscillation based on the examination of coccolithophore assemblages in a largely laminated 35 ka sedimentary record, retrieved in the Santa Barbara Basin (core MD02-2503). At a centennial scale coccolith assemblages indicate low primary production in the basin from 35 to 11.5 ka B.P., whereas the Holocene is characterized by high-productivity conditions. This pattern demonstrates the influence of the glacial-interglacial cycles on productivity and, by inference, on the nutrient supply by the upwelling cell off Point of Conception. On a shorter scale, laminations associated with Dansgaard-Oeschger events appear to be due to an injection of poorly oxygenated waters in the deepest part of the basin rather than anoxia due to high primary production. A seasonal sampling in seven laminated sections (spanning from 20 to 220 years) extracted from Holocene, Bølling-Allerød, and Dansgaard-Oeschger event 3 indicates El Niño probably existed continuously during the last 28 ka. The frequency of El Niño varied through time (between 1/2.5 and 1/5 event/a) and appearing to follow the precession cycle. El Niño exhibits higher (lower) frequencies when the precession values are lower (higher). Finally, the Holocene is characterized by a decrease in El Niño's frequencies due to the reinforcement of El Niño through this period.