209 resultados para [- - -] ta zytopoliou of Karanis(?)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bündnerschiefer of the Swiss-Italian Alps is a large sedimentary complex deposited on the Piemonte-Liguria and Valais oceans and associated continental margins from the upper Jurassic to Eocene. It is made of a large variety of sequences associated or not with an ophiolitic basement. The Bündnerschiefer makes an accretionary prism that developed syn-tectonically from the onset of alpine subduction, and it records orogenic metamorphism following episodes of HP metamorphism. The Bündnerschiefer shares important similarities with the Otago schists of New Zealand and with the Wepawaug schists of Connecticut, both of which form accretionary prisms and have an orogenic metamorphic imprint. With the aim of testing the hypothesis of mobility of chemical components as a function of metamorphic grade, in this work I present fifty-five bulk chemical analyses of various lithological facies of the Bündnerschiefer collected along the well-studied field gradient of the Lepontine dome of Central Switzerland, in the Prättigau half window of East Switzerland, and in the Tsaté Nappe of Valle d'Aosta (Italy). The dataset includes the concentration of major components, large ion lithophile elements (Rb, Sr, Ba, Cs), high field strength elements (Zr, Ti, Nb, Th, U, Ta, Hf), fluid-mobile light elements (B, Li), volatiles (CO2, S), REEs, and Y, V, Cr, Co, Sn, Pb, Cu, Zn, Tl, Sb, Be, and Au. These data are compared against the compositions of the global marine sediment reservoir, typical crustal reservoirs, and against the previously measured compositions of Otago and Wepawaug schists. Results reveal that, irrespective of their metamorphic evolution, the bulk chemical compositions of orogenic metasediments are characterized by mostly constant compositional ratios (e.g., K2O/Al2O3, Ba/Al2O3, Sr/CaO, etc.), whose values in most cases are undistinguishable from those of actual marine sediments and other crustal reservoirs. For these rocks, only volatile concentrations decrease dramatically as a function of metamorphic temperature, and significant deviations from the reservoir signatures are evident for SiO2, B, and Li. These results are interpreted as an indication of residual enrichment in the sediments, a process taking place during syn-metamorphic dehydration from the onset of metamorphism in a regime of chemical immobility. Residual enrichment increased the absolute concentrations of the chemical components of these rocks, but did not modify significantly their fundamental ratios. This poor compositional modification of the sediments indicates that orogenic metamorphism in general does not promote significant mass transfer from accretionary prisms. In contrast, mass transfer calculations carried out in a shear zone crosscutting the Bündnerschiefer shows that significant mass transfer occurs within these narrow zones, resulting in gains of H2O, SiO2, Al2O3, K2O, Ba, Y, Rb, Cu, V, Tl, Mo, and Ce during deformation and loss of Na2O, CO2, S, Ni, B, U, and Pb from the rock. These components were presumably transported by an aquo-carbonic fluid along the shear zone. These distinct attitudes to mobilize chemical elements from orogenic sediments may have implications for a potentially large number of geochemical processes in active continental margins, from the recycling of chemical components at plate margins to the genesis of hydrothermal ore deposits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basement lavas from Sites 756, 757, and 758 on Ninetyeast Ridge are tholeiitic basalts. Lavas from Sites 756 and 757 appear to be subaerial eruptives, but the lowermost flows from Hole 758A are pillow lavas. In contrast to the compositional variation during the waning stages of Hawaiian volcanism, no alkalic lavas have been recovered from Ninetyeast Ridge and highly evolved lavas were recovered from only one of seven drill sites (DSDP Site 214). All lavas from Site 758 have relatively high MgO contents (8-10 wt%), and they are less evolved than lavas from Sites 756 and 757. Although abundances of alkali metals in these Ninetyeast Ridge basalts were significantly modified by postmagmatic alteration, abundances of other elements reflect magmatic processes. At Site 757 most of the lavas are Plagioclase cumulates, but lava compositions require two compositionally distinct, AhCb-rich parental magmas, perhaps segregated at relatively low mantle pressures. In addition, at both Sites 756 and 758 more than one compositionally distinct parental magma is required. The compositions of these Ninetyeast Ridge lavas, especially those from Site 758, require a source component with a depleted composition; specifically, the abundance ratios Th/Ta, Th/La, Ba/Nb, Ba/La, and La/Ce in these lavas are generally less than the ratios inferred for primitive mantle. Lavas from Ninetyeast Ridge and the Kerguelen Archipelago have very different chondrite-normalized REE patterns, with lower light REE/heavy REE (LREE/HREE) ratios in lavas from Ninetyeast Ridge. However, lavas from Sites 757 and 758 have Pb isotope ratios that overlap with the field defined by lavas from the Kerguelen Archipelago (Weis and Frey, this volume). Therefore, these Ninetyeast Ridge lavas contain more of a component that is relatively depleted in LREE and other highly incompatible elements, but have similar amounts of the component that controls radiogenic Pb isotopes. A model involving mixing between components related to a depleted source and an enriched plume source has been proposed for the oldest Kerguelen Archipelago basalts and Ninetyeast Ridge lavas. Although the incompatible element characteristics of the Ninetyeast Ridge lavas are intermediate between depleted MORB and Kerguelen Archipelago basalts, these data are not consistent with a simple two-component mixing process. A more complex model is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major and trace dement data are used to establish the nature and extent of spatial and temporal chemical variations in basalts erupted in the Iceland region of the North Atlantic Ocean. The ocean floor samples are those recovered by legs 38 and 49 of the Deep Sea Drilling Project. Within each of the active zones on Iceland there are small scale variations in the light rare earth elements and ratios such as K/Y: several central complexes and their associated fissure swarms erupt basalts with values of K/Y distinct from those erupted at adjacent centres; also basalts showing a wide range of immobile trace element ratios occur together within single vertical sections and ocean floor drill holes. Although such variations can be explained in terms of the magmatic processes operating on Iceland they make extrapolations from single basalt samples to mantle sources underlying the outcrop of the sample highly tenuous. 87Sr/86Sr ratios measured for 25 of the samples indicate a total range from 0.7028 in a tholeiite from the Reykjanes Ridge to 0.7034 in an alkali basalt from Iceland and are consistent with other published ratios from the region. A positive correlation between 87Sr/86Sr and Ce/Yb ratios indicates the existence of systematic isotopic and elemental variations in the mantle source region. An approximately fivefold variation in Ce/Yb ratio observed in basalts with the same 87Sr/86Sr ratio implies that different degrees and types of partial melting have been involved in magma genesis from a single mantle composition. 87Sr/86Sr ratios above 0.7028, Th/U ratios close to 4 and La/Ta ratios close to 10 distinguish most basalts erupted in this part of the North Atlantic Ocean from normal mid-ocean ridge basalt (N-type MORB) - although N-type MORB has been erupted at extinct spreading axes just to the north and northeast of Iceland as well as the presently active Iceland-Jan Mayen Ridge. Comparisons with the hygromagmatophile element and radiogenic isotope ratios of MORB and the estimated primordial mantle indicate that the mantle sources producing Iceland basalts have undergone previous depletion followed by more recent enrichment events. A veined mantle source region is proposed in preference to the mantle plume model to explain the chemical variations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This book presents new data on chemical and mineral compositions and on density of altered and fresh igneous rocks from key DSDP and ODP holes drilled on the following main tectonomagmatic structures of the ocean floor: 1. Mid-ocean ridges and abyssal plains and basins (DSDP Legs 37, 61, 63, 64, 65, 69, 70, 83, and 91 and ODP Legs 106, 111, 123, 129, 137, 139, 140, 148, and 169); 2. Seamounts and guyots (DSDP Legs 19, 55, and 62 and ODP Legs 143 and 144); 3. Intraplate rises (DSDP Legs 26, 33, 51, 52, 53, 72, and 74 and ODP Legs 104, 115, 120, 121, and 183); and 4. Marginal seas (DSDP Legs 19, 59, and 60 and ODP Legs 124, 125, 126, 127, 128, and 135). Study results of altered gabbro from the Southwest Indian Ridge (ODP Leg 118) and serpentinized ultramafic rocks from the Galicia margin (ODP Leg 103) are also presented. Samples were collected by the authors from the DSDP/ODP repositories, as well as during some Glomar Challenger and JOIDES Resolution legs. The book also includes descriptions of thin sections, geochemical diagrams, data on secondary mineral assemblages, and recalculated results of chemical analyses with corrections for rock density. Atomic content of each element can be quantified in grams per standard volume (g/1000 cm**3). The suite of results can be used to estimate mass balance, but parts of the data need additional work, which depends on locating fresh analogs of altered rocks studied here. Results of quantitative estimation of element mobility in recovered sections of the upper oceanic crust as a whole are shown for certain cases: Hole 504B (Costa Rica Rift) and Holes 856H, 857C, and 857D (Middle Valley, Juan de Fuca Ridge).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distribution, size, mineral, and chemical compositions of ferromanganese micronodules (FMMNs) and chemical composition of host sediments were examined in a series of red clay samples with ages from Eocene to the present at Ocean Drilling Program Leg 199, Site 1216, south of the Molokai Fracture Zone in the Central Pacific Basin. The number of FMMNs changed drastically throughout the 40-m-long red clay intervals. FMMNs are abundant in the upper 9 m of core, decrease between 9 and 25 meters below seafloor (mbsf) with depth, and are very rare from 30 to 40 mbsf. Chemical composition of FMMNs showed high Mn/Fe ratios and Ni and Cu contents and a distinct positive Ce anomaly because of the existence of buserite. This suggests that FMMNs in the red clay from 25 mbsf to the top of the cored interval were deposited continuously in an oxic diagenetic bottom environment. The red clay below 30 mbsf with higher Mn contents contains few FMMNs but abundant tiny Mn particles within brown silicates coated by Fe (oxy-hydro)oxides. This indicates that the mode of manganese deposition changed between 25 and 30 mbsf.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Leg 136 drilling was conducted at two sites in pelagic sediments of the north central Pacific Ocean. In this report, pore-water analyses for major seawater constituents, alkalinity, ammonia, nitrate, phosphate, silica, Ba, Fe, Li, Mn, and Sr are presented. Although concentration gradients are generally weak, resulting from slow sedimentation and concomitant diffusive communication with overlying water, there is evidence of sediment/pore-water interactions, associated sediment diagenesis, and formation of authigenic minerals. Bulk major and trace element compositions of the sediments are consistent with reactions inferred to occur within the sediments and with the lithology and mineralogy. Elemental compositions of the sediments are not strongly affected by diagenesis and are primarily related to the dominant mineralogy. Sediments are typical of deep ocean pelagic settings with a significant contribution from the alteration of volcanic ash and the formation of zeolites. Sedimentary rare earth element patterns also provide evidence of active scavenging processes by Mn and Fe oxide phases in the deeper sediments at Site 842.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four samples, G5, G7, G8, and G10, collected by Dr W. W. Bishop from an exposed section in the bank of the River Annan, at Roberthill Farm, Dumfriesshire (S35, 110794) were submitted for pollen analysis (Table I.). The samples, with the exception of the uppermost, were from thin peat layers that lie in the middle of a series of water- laid sands, silts and clays several feet in thickness and now rather strongly arched. The lowermost sample, G5, was taken from an organic layer about | in. thick overlying fine sand and underlying some 2.5 in. of grey, silty fine sand. A narrow layer of sandy peat immediately above the silty, fine sand yielded sample G7, and G8 was collected from a similar peaty layer separated from G7 by more sandy- silty peat. The uppermost sample, G10, was taken from light grey clay 13 in. above sample G8.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

About 13 m of Cretaceous, tholeiitic basalt, ranging from normal (N-MORB) to transitional (T-MORB) mid-ocean-ridge basalts, was recovered at Ocean Drilling Program Site 843 west of the island of Hawaii. These moderately fractionated, aphyric lavas are probably representative of the oceanic basement on which the Hawaiian Islands were built. Whole-rock samples from parts of the cores exhibiting only slight, low-temperature, seawater alteration were analyzed for major element, trace element, and isotopic composition. The basalts are characterized by enrichment in the high field strength elements relative to N-MORB, by a distinct positive Eu anomaly, and by Ba/Nb and La/Nb ratios that are much lower than those of other crustal or mantle-derived rocks, but their isotope ratios are similar to those of present-day N-MORB from the East Pacific Rise. Hole 843A lavas are isotopically indistinguishable from Hole 843B lavas and are probably derived from the same source at a lower degree of partial melting, as indicated by lower Y/Nb and Zr/Nb ratios and by higher concentrations of light and middle rare earth elements and other incompatible elements relative to Hole 843B lavas. Petrographic and trace-element evidence indicates that the Eu anomaly was the result of neither plagioclase assimilation nor seawater alteration. The Eu anomaly and the enrichments in Ta, Nb, and possibly U and K relative to N-MORB apparently are characteristic of the mantle source. Age-corrected Nd and Sr isotopic ratios indicate that the source for the lavas recovered at ODP Site 843 was similar to the source for Southeast Pacific MORB. An enriched component within the Cretaceous mantle source of these basalts is suggested by their initial 208Pb/204Pb-206Pb/204Pb and epsilon-Nd-206Pb/204Pb ratios. The Sr-Pb isotopic trend of Hawaiian post-shield and post-erosional lavas cannot be explained by assimilation of oceanic crust with the isotopic composition of the Site 843 basalts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents materials on composition and texture of weakly serpentinized ultrabasic rocks from the western and eastern walls of the Markov Deep (5°30.6'-5°32.4'N) in the rift valley of the Mid-Atlantic Ridge. Predominant harzburgites with protogranular and porphyroclastic textures contain two major generations of minerals: the first generation composes the bulk of rocks and consists of Ol_89.8-90.4 + En_90.2-90.8 + Di_91.8 + Chr (Cr#32.3-36.6, Mg#67.2-70.0), while the second generation composes very thin branching veinlets and consists of PlAn_32-47 + Ol_74.3-77.1 + Opx_55.7-71.9 + Cpx_67.5 + Amph_53.7-74.2 + Ilm. Syndeformational olivine neoblasts in recrystallization zones are highly magnesian. Concentrations and covariations of major elements in harzburgites indicate that these rocks are depleted in mantle residues (high Mg# of minerals and whole-rock samples and low in CaO, Al2O3, and TiO2) that are significantly enriched in trace HFSE and REE (Zr, Hf, Y, LREE, and all REE). Mineralogy and geochemistry of harzburgites were formed by interaction of mantle residues with hydrous, strongly fractionated melts that impregnated them. Mineral composition of veinlets in harzburgites and mineralogical-geochemical characteristics of related plagiogranites and gabbronorites suggest that these plagiogranites were produced by melt residuals after crystallization of gabbronorites. Modern characteristics of harzburgites were shaped by the following processes: (i) partial melting of mantle material simultaneously with its subsolidus deformations, (ii) brittle-plastic deformations associated with cataclastic flow and recrystallization, and (iii) melt percolation along zones of maximal stress relief and interaction of this melt with magnesian mantle residue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5-37 mg/kg, Cu 20-190 mg/kg, Zn 50-300 mg/kg, Pb 4.5- 34 mg/kg). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We conducted a six-week investigation of the sea ice inorganic carbon system during the winter-spring transition in the Canadian Arctic Archipelago. Samples for the determination of sea ice geochemistry were collected in conjunction with physical and biological parameters as part of the 2010 Arctic-ICE (Arctic - Ice-Covered Ecosystem in a Rapidly Changing Environment) program, a sea ice-based process study in Resolute Passage, Nunavut. The goal of Arctic-ICE was to determine the physical-biological processes controlling the timing of primary production in Arctic landfast sea ice and to better understand the influence of these processes on the drawdown and release of climatically active gases. The field study was conducted from 1 May to 21 June, 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reentry of Hole 462A during Leg 89 resulted in the penetration of a further 140 m of basalt sheet-flows similar to those found during Leg 61 at the same site. Twelve volcanic units (45 to 56) were recognized, comprising a series of rapidly extruded, interlayered aphyric and poorly clinopyroxene-plagioclase-olivine phyric, nonvesicular basalts. All exhibit variable, mild hydration and oxidation, relative to fresh oceanic basalts, produced under reducing, low-CO2-activity conditions within the zeolite facies. Secondary assemblages are dominated by smectites, zeolites, and pyrite, produced by low-temperature reaction with poorly oxygenated seawater. No systematic mineralogical or chemical changes are observed with depth, although thin quenched units and more massive hypocrystalline units exhibit slightly different alteration parageneses. Chemically, the basalts are olivine- and quartz-normative tholeiites, characterized by low incompatible-element abundances, similar to mildly enriched MORB (approaching T-type), with moderate, chrondite-normalized, large-ionlithophile- element depletion patterns and generally lower or near-chrondritic ratios for many low-distribution-coefficient (KD) element pairs. In general, relative to cyclic MORB chemical variation, they are uniform throughout, although 3 chemical megagroups and 22 subgroups are recognized. It is considered that the megagroups represent separate low-pressure-fractionated systems (olivine + Plagioclase ± clinopyroxene), whereas minor variations within them (subgroups) indicate magma mixing and generation of near-steady-state conditions. Overall, relatively minor fractionation coupled with magma mixing produced a series of compositionally uniform lavas. Parental melts were produced by similar degrees of partial melting, although the source may have varied slightly in LIL-element content.