780 resultados para % of Monoquartz Kalifeldspar Plagioklase
Resumo:
Carefully selected sea bottom surface fine sand samples were studied from two sand ribbons normal to the shore. Possible sediment transport along these sand ribbons were investigated from interpretation of the sediment patterns. Simple grain size parameters were obtained and results of heavy mineral and feldspar analysis were compared. On one ribbon offshore sediment movement was indicated, while conversely on the other, onshore movement is proposed.
Resumo:
Correlation of mineral associations from sediment recovered on the northwestern Australian continental margin document the juvenile-to-mature evolution of a segment of the Indian Ocean. Lower Cretaceous sediments contain sandy-to-silty radiolarian claystone that consists of highly smectitic mixed-layered illite/smectite (I/S) in addition to minor amounts of diagenetic pyrite, barite, and rhodochrosite. These immature, poorly sorted sediments were derived from nearby continental margin sources. Discrete bentonite layers and abundant smectite are the alteration products of volcanic material deposited during early basin formation. Abundant quartz-replaced radiolarian tests suggest high surface-water productivity, and calcareous fossils indicate water depths were above the calcite compensation depth (CCD) in the juvenile Indian Ocean. The increase in pelagic carbonate from the mid- to Late Cretaceous signals the transition to mature, open-ocean conditions. Similar to other slowly deposited contemporaneous deep-sea sediments, mid- to Upper Cretaceous sediments of the northwestern margin of Australia contain palygorskite. This palygorskite is associated with calcareous sediment across the ooze-to-chalk transition, detrital mixed-layered I/S, and zeolite minerals in places. This palygorskite occurs above the transformation from opal-A to opal-CT. The underlying opal-CT sediment contains abundant smectite and zeolite minerals. Calcareous sediment dominates the Cenozoic, except at abyssal sites that were not inundated by calcareous turbidites. Paleocene and Eocene sediments contain abundant smectite and zeolite minerals derived from the alteration of volcanic material. Palygorskite was found to be associated with sepiolite and dolomite in Miocene sediments from Site 765 in the Argo Basin. Pliocene and Quaternary sediments contain detrital kaolinite and mixed-layered I/S, abundant opal-A radiolarian tests, and minor amounts of pyrite
Resumo:
The regional patterns of texture and composition of modern continental slope and pelagic sediments off Chile between 25°S and 43°S reflect the latitudinal segmentation of geological, morphological, and climatic features of the continental hinterland. Grain-size characteristics are controlled by the grain-size of source rocks, the weathering regime, and mode of sediment input (eolian off northern Chile vs fluvial further south). Bulk-mineral assemblages reveal a low grade of maturity. Regional variations are governed by the source-rock composition of the different geological terranes and the relative source-rock contribution of the Coastal Range and Andes, as controlled by the continental hydrology. The relative abundance of clay minerals is also predominantly influenced by the source-rock composition and partly by continental smectite neoformation. Latitudinal variations of illite crystallinities along the Chilean continental slope (and west of the Peru-Chile trench) clearly reflect modifications of the weathering regime which correspond to the strong climatic zonation of Chile.
Resumo:
In 2004, Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition, ACEX) to the Lomonosov Ridge drilled the first Central Arctic Ocean sediment record reaching the uppermost Cretaceous (~430 m composite depth). While the Neogene part of the record is characterized by grayish-yellowish siliciclastic material, the Paleogene part is dominated by biosiliceous black shale-type sediments. The lithological transition between Paleogene and Neogene deposits was initially interpreted as a single sedimentological unconformity (hiatus) of ~26 Ma duration, separating Eocene from Miocene strata. More recently, however, continuous sedimentation on Lomonosov Ridge throughout the Cenozoic was proclaimed, questioning the existence of a hiatus. In this context, we studied the elemental and mineralogical sediment composition around the Paleogene-Neogene transition at high resolution to reconstruct variations in the depositional regime (e.g. wave/current activity, detrital provenance, and bottom water redox conditions). Already below the hiatus, mineralogical and geochemical proxies imply drastic changes in sediment provenance and/or weathering intensity in the hinterland, and point to the existence of another, earlier gap in the sediment record. The sediments directly overlying the hiatus (the Zebra interval) are characterized by pronounced and abrupt compositional changes that suggest repeated erosion and re-deposition of material. Regarding redox conditions, euxinic bottom waters prevailed at the Eocene Lomonosov Ridge, and became even more severe directly before the hiatus. With detrital sedimentation rates decreasing, authigenic trace metals were highly enriched in the sediment. This continuous authigenic trace metal enrichment under persistent euxinia implies that the Arctic trace metal pool was renewed continuously by water mass exchange with the world ocean, so the Eocene Arctic Ocean was not fully restricted. Above the hiatus, extreme positive Ce anomalies are clear signs of a periodically well-oxygenated water column, but redox conditions were highly variable during deposition of the Zebra interval. Significant Mn enrichments only occur above the Zebra interval, documenting the Miocene establishment of stable oxic conditions in the Arctic Ocean. In summary, extreme and abrupt changes in geochemistry and mineralogy across the studied sediment section do not suggest continuous sedimentation at the Lomonosov Ridge around the Eocene-Miocene transition, but imply repeated periods of very low sedimentation rates and/or erosion.
Resumo:
An extensive radiograph study of 24 undisturbed, up to 206-cm long box and gravity cores from the western part of the Strait of Otranto revealed a great variety of primary bedding structures and secondary burrowing features. The regional distribution of the sediments according to their structural, textural, and compositional properties reflects the major morphologic subdivisions of the strait into shelf, slope, and trough bottom (e.g., the bottom of the northern end of the Corfu-Kephallinia Trough, which extends from the northeastern Ionian Sea into the Strait of Otranto): (1) The Apulian shelf (0 to -170m) is only partly covered by very poorly sorted, muddy sands without layering. These relict(?) sands are rich in organic carbonate debris and contain glauconite and reworked (?Pleistocene) ooids. (2) The slope sediments (-170 to -1,000 m) are poorly sorted, sandy muds with a high degree of burrowing. One core (OT 5) is laminated and shows slump structures. An origin of these slumped sediment masses from older deposits higher on the slope was inferred from their abnormal compaction, color, texture, organic content, and mineral composition. (3) Cores from the northern end of the Corfu-Kephallinia Trough (-980 to -1,060 m) display a few graded sand layers, 2-5 cm (maximum 30 cm) thick with parallel and ripple-cross-laminations, deposited by oceanic bottom or small-scale turbidity currents. They are intercalated with homogeneous lutite. (4) Hemipelagic sediments prevail in the more southerly part of the Corfu-Kephallinia Trough and on the "Apulian-Ionian Ridge", the southern submarine extension of the Apulian Peninsula. Below a core depth of 160 cm, these cores have a laminated ("varved") zone, representing an Early Holocene (Boreal-Atlanticum) "stagnation layer" (14C age approximately 9,000 years). The terrigenous components of the surface sediments as well as those of the deeper sand layers can be derived from the Apulian shelf and the Italian mainland (Cretaceous Apulian Plateau and Gargano Mountains, southern Apennines, volcanic province of the Monte Vulture). Indicated by the heavy mineral glaucophane, a minor proportion of the sedimentary material is probably of Alpine origin. If this portion is considered to be first-cycle clastic material it reaches the Strait of Otranto after a longitudinal transport of 700 km via the Adriatic Sea. The lack of phyllosilicates in the coarse- to medium-grained shelf samples might be explained by the activity of the "Apulian Current" (surface velocities up to 4 knots) which in the past possibly has affected the bottom almost down to depths of the shelf edge. The percentage of planktonic organisms, and also the plankton: benthos ratio in the sediments is a useful indicator for bathymetry (depth zonation).
Resumo:
A bulk-sediment and clay-fraction X-ray diffraction study of samples from Deep Sea Drilling Project Leg 60 shows an abundance of the following minerals: plagioclase feldspar, zeolite, smectite, Fe-Mg chlorite, attapulgite, and serpentine. Amorphous compounds are also abundant. The variations in abundance of the different components correspond to episodes of volcanic activity through time. Deposits from periods of great activity are composed of sediments very rich in amorphous matter and in "primary" minerals (e.g., plagioclase feldspars). During relatively quiet periods, clay minerals and zeolites predominate.
Resumo:
Bulk mineralogy, Sm, Nd and Pb elemental and isotopic compositions of the clay-size fraction of Holocene sediments were analyzed in three deep North Atlantic cores to trace the particle provenance. The aims of the present paper are to identify the origin of the particles driven by deep currents and to reconstruct deep circulation changes over the Holocene in the North Atlantic. The three cores are retrieved in fracture zones; two of them are located in the Island Basin along the gyre of North Atlantic Deep Water, and the third core is located off the present deep circulation gyre in the Labrador Sea. Whereas sedimentary supplies in the Labrador Sea were constantly derived from proximal sources, the geochemical mixing trends in the Iceland Basin samples indicate pronounced changes in the relative contribution of continental margin inputs over the past 6 kyr. Supplies from western European margin that sharply increased at 6 kyr were progressively diluted by a larger contribution of Scandinavian margins over the last 3 kyr. Changes in composition of the particles imply significant reorganization of paleocirculation of the deep North Atlantic components in the eastern basins: mainly reorganizations for both Iceland-Scotland Overflow Water and Norwegian Sea Overflow Water. Moreover the unusual Pb isotopic composition of the oldest sediments from the southern Iceland Basin indicates that distal supplies from Greenland margin were driven into the Iceland Basin, supporting a deep connection between Labrador Sea and Iceland Basin through the Charlie Gibbs Fracture Zone prior the Holocene Transition period.
Resumo:
The reconstruction of low-latitude ocean-atmosphere interactions is one of the major issues of (paleo-)environmental studies. The trade winds, extending over 20° to 30° of latitude in both hemispheres, between the subtropical highs and the intertropical convergence zone, are major components of the atmospheric circulation and little is known about their long-term variability on geological time-scales, in particular in the Pacific sector. We present the modern spatial pattern of eolian-derived marine sediments in the eastern equatorial and subtropical Pacific (10°N to 25°S) as a reference data set for the interpretation of SE Pacific paleo-dust records. The terrigenous silt and clay fractions of 75 surface sediment samples have been investigated for their grain-size distribution and clay-mineral compositions, respectively, to identify their provenances and transport agents. Dust delivered to the southeast Pacific from the semi- to hyper-arid areas of Peru and Chile is rather fine-grained (4-8 µm) due to low-level transport within the southeast trade winds. Nevertheless, wind is the dominant transport agent and eolian material is the dominant terrigenous component west of the Peru-Chile Trench south of ~ 5°S. Grain-size distributions alone are insufficient to identify the eolian signal in marine sediments due to authigenic particle formation on the sub-oceanic ridges and abundant volcanic glass around the Galapagos Islands. Together with the clay-mineral compositions of the clay fraction, we have identified the dust lobe extending from the coasts of Peru and Chile onto Galapagos Rise as well as across the equator into the doldrums. Illite is a very useful parameter to identify source areas of dust in this smectite-dominated study area.
Resumo:
Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ~13,500 and ~8,900 cal. years BP and possibly during the 8,200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8°C during the Holocene Thermal Maximum (HTM) between ~8,900 and ~4,500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3,000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7,000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.
Resumo:
In this study of volcanic ash retrieved from Shatsky Rise during Ocean Drilling Program Leg 198, the texture and composition of the volcanic components (glass and crystals) were used to fingerprint ash layers for detailed correlation. Correlations among ash layers in holes drilled at the same site as well as between sites, including sites on different parts (highs) of the rise, were tested. Although high-to-high correlations failed, intrahigh correlations were more successful. Our data suggest a significantly different source for some pyroclastic debris, especially at Site 1208, possibly associated with pumice rafts carried northward from the Izu-Bonin arc by the Kuroshio Current. Other ashes are consistent with rhyolitic to dacitic air fall ash from Asian arc volcanoes. We were not able to texturally distinguish between air fall ash and pumice-raft fallout but suspect that the latter is associated with higher percentages of vesiculated ash components, as we demonstrate occur in more proximal Izu-Bonin pyroclastic deposits.
Resumo:
One hundred and twenty point counts of Oligocene to Recent sands and sandstones from DSDP sites in the Japan and Mariana intraoceanic forearc and backarc basins demonstrate that there is a clear compositional difference between the continentally influenced Japan forearc and backarc sediments, and the totally oceanic Mariana forearc and backarc sediments. Japan forearc sediments average 10 QFL%Q, 0.82 P/F, 2 Framework%Mica, 74 LmLvLst%Lv, and 19 LmLvLst%Lst. In contrast, the Mariana forearc and backarc sediments average 0 QFL%Q, 1.00 P/F, 0 Framework%Mica, 98 LmLvLst%Lv, and 1 LmLvLst%Lst. Sediment compositions in the Japan region are variable. The Honshu forearc sediments average 5 QFL%Q, 0.94 P/F, 1 Framework%Mica, 82 LmLvLst%Lv, and 15 LmLvLst%Lst. The Yamato Basin sediments (DSDP Site 299) average 13 QFL%Q, 0.70 P/F, 3 Framework%Mica, 78 LmLvLst%Lv, and 14 LmLvLst%Lst. The Japan Basin sediments (DSDP Site 301) average 24 QFL%Q, 0.54 P/F, 9 Framework%Mica, 58 LmLvLst%Lv, and 21 LmLvLst%Lst. P/F and Framework%Mica are higher in the Yamato Basin sediments than in the forearc sediments due to an increase in modal potassium content of volcanic rocks from east to west, on the island of Honshu. Site 301 possesses a higher QFL%Q and LmLvLst%Lst, and lower LmLvLst%Lv than Site 299 because it receives sediment from the Asian mainland as well as the island of Honshu. DSDP Site 293 sediments, in the Mariana region, average 0.97 P/F, 1 Framework%Mica, 13 LmLvLst%Lm and 83 LmLvLst%Lv, due to their proximity to the island of Luzon. The remaining Mariana forearc and backarc sediments show a uniform composition.