703 resultados para oligotrophic
Resumo:
We investigated carbon acquisition by the N2-fixing cyanobacterium Trichodesmium IMS101 in response to CO2 levels of 15.1, 37.5, and 101.3 Pa (equivalent to 150, 370, and 1000 ppm). In these acclimations, growth rates as well as cellular C and N contents were measured. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, and CO2 and HCO3- fluxes were measured using membrane inlet mass spectrometry and the 14C disequilibrium technique. While no differences in growth rates were observed, elevated CO2 levels caused higher C and N quotas and stimulated photosynthesis and N2 fixation. Minimal extracellular CA (eCA) activity was observed, indicating a minor role in carbon acquisition. Rates of CO2 uptake were small relative to total inorganic carbon (Ci) fixation, whereas HCO{3 contributed more than 90% and varied only slightly over the light period and between CO2 treatments. The low eCA activity and preference for HCO3- were verified by the 14C disequilibrium technique. Regarding apparent affinities, half-saturation concentrations (K1/2) for photosynthetic O2 evolution and HCO3- uptake changed markedly over the day and with CO2 concentration. Leakage (CO2 efflux : Ci uptake) showed pronounced diurnal changes. Our findings do not support a direct CO2 effect on the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) but point to a shift in resource allocation among photosynthesis, carbon acquisition, and N2 fixation under elevated CO2 levels. The observed increase in photosynthesis and N2fixation could have potential biogeochemical implications, as it may stimulate productivity in N-limited oligotrophic regions and thus provide a negative feedback in rising atmospheric CO2 levels.
Resumo:
The effect of ocean warming and acidification was investigated on a natural plankton assemblage from an oligotrophic area, the bay of Villefranche (NW Mediterranean Sea). The assemblage was sampled in March 2012 and exposed to the following four treatments for 12 days: control ( 360 µatm, 14°C), elevated pCO2 ( 610 µatm, 14°C), elevated temperature ( 410 µatm, 17°C), and elevated pCO2 and temperature ( 690 µatm, 17°C). Nutrients were already depleted at the beginning of the experiment and the concentrations of chlorophyll a (chl a), heterotrophic prokaryotes and viruses decreased, under all treatments, throughout the experiment. There were no statistically significant effects of ocean warming and acidification, whether in isolation or combined, on the concentrations of nutrients, particulate organic matter, chl a and most of the photosynthetic pigments. Furthermore, 13C labelling showed that the carbon transfer rates from 13C-sodium bicarbonate into particulate organic carbon were not affected by seawater warming nor acidification. Rates of gross primary production followed the general decreasing trend of chl a concentrations and were significantly higher under elevated temperature, an effect exacerbated when combined to elevated pCO2 level. In contrast to the other algal groups, the picophytoplankton population (cyanobacteria, mostly Synechococcus) increased throughout the experiment and was more abundant in the warmer treatment though to a lesser extent when combined to high pCO2 level. These results suggest that under nutrient-depleted conditions in the Mediterranean Sea, ocean acidification has a very limited impact on the plankton community and that small species will benefit from warming with a potential decrease of the export and energy transfer to higher trophic levels.