445 resultados para ddc: 384.533


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural gas hydrates are clathrates in which water molecules form a crystalline framework that includes and is stabilized by natural gas (mainly methane) at appropriate conditions of high pressures and low temperatures. The conditions for the formation of gas hydrates are met within continental margin sediments below water depths greater than about 500 m where the supply of methane is sufficient to stabilize the gas hydrate. Observations on DSDP Leg 11 suggested the presence of gas hydrates in sediments of the Blake Outer Ridge. Leg 76 coring and sampling confirms that, indeed, gas hydrates are present there. Geochemical evidence for gas hydrates in sediment of the Blake Outer Ridge includes (1) high concentrations of methane, (2) a sediment sample with thin, matlike layers of white crystals that released a volume of gas twenty times greater than its volume of pore fluid, (3) a molecular distribution of hydrocarbon gases that excluded hydrocarbons larger than isobutane, (4) results from pressure core barrel experiments, and (5) pore-fluid chemistry. The molecular composition of the hydrocarbons in these gas hydrates and the isotopic composition of the methane indicate that the gas is derived mainly from microbiological processes operating on the organic matter within the sediment. Although gas hydrates apparently are widespread on the Blake Outer Ridge, they probably are not of great economic significance as a potential, unconventional, energy resource or as an impermeable cap for trapping upwardly migrating gas at Site 533.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting sea-ice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurements, operating spectral radiometers on a remotely operated vehicle (ROV) under Arctic sea ice in summer. This data set is used to produce an Arctic-wide map of light distribution under summer sea ice. Our results show that transmittance through first-year ice (FYI, 0.11) was almost three times larger than through multi-year ice (MYI, 0.04), and that this is mostly caused by the larger melt-pond coverage of FYI (42 vs. 23%). Also energy absorption was 50% larger in FYI than in MYI. Thus, a continuation of the observed sea-ice changes will increase the amount of light penetrating into the Arctic Ocean, enhancing sea-ice melt and affecting sea-ice and upper-ocean ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal gaseous carbon-containing components identified in the first 400 m of sediment at Deep Sea Drilling Project Site 533, Leg 76, are methane (CH4) and carbon dioxide (CO2). Below a sub-bottom depth of about 25 m, sediment cores commonly contained pockets caused by the expansion of gas upon core recovery. The carbon isotopic composition (d13C per mil relative to PDB standard) of CH4 and CO2 in these gas pockets has been measured, resulting in the following observations: (1) d13C-CH4 values increase with depth from approximately -94 per mil in the uppermost sediment to about -66 per mil in the deepest sediment, reflecting a systematic but nonlinear depletion of 12C with depth. (2) d13C-CO2 values also increase with depth of sediment from about -25 per mil to about -4 per mil, snowing a depletion of 12C that closely parallels the trend of the isotopic composition of CH4. The magnitude and parallel distribution of d13C values for both CH4 and CO2 are consistent with the concept that the formation of the CH4 resulted from the microbiological reduction of CO2 from organic substances. These results imply that CH4 and CO2 incorporated in gas hydrates at this site are biogenic.