439 resultados para Nitrogen and phosphorous loading
Resumo:
Simultaneous triple stable isotope analysis of carbon, nitrogen and sulphur was employed to study the temporal variation in the food web of a subtidal eelgrass (Zostera marina) bed in the western Baltic Sea. Samples of three potential food sources: eelgrass, epiphytes and seston, as well as consumer species were collected biweekly from March through September 2011. Temporal variation of stable isotope signatures was observed in primary producers and consumer species. However, variation within a species, particularly omnivores, often exceeded variation over time. The high degree of omnivory among the generalist feeders in this eelgrass community allows for generalist feeders to flexibly switch food sources, thus enhancing food web stability. As coastal systems are subject to seasonal changes, as well as alterations related to human disturbance and climate, these food webs may retain a certain resilience due to their plentiful omnivores.
Resumo:
Fatty acid and alcohol profiles and stable nitrogen and carbon isotope values, d15N and d13C, of Calanus finmarchicus CV were studied in June 2004 to estimate their trophic status along the northern Mid-Atlantic Ridge i.e. the Reykjanes Ridge (RR), extending from Iceland in the north to the productive region of the Sub-Polar Front (SPF) in the south. Two main groups of stations were defined in the study area based on fatty acid (FA) and fatty alcohol compositions, the stations in the RR area constituted one group and the stations in the frontal area constituted another. The sum of relative amounts of the dietary FAs was significantly higher in the RR area than in the frontal area. Conversely, the long-chained FAs, 20:1 and 22:1, were found in significantly lower relative amounts in the RR area than in the frontal area, thus indicating later ascent of the animals in the frontal area. Further support of this is provided by the fatty alcohols ratio 20:1/22:1 which differed significantly between the two areas. The d15N values were significantly higher in the frontal area compared to the RR area indicating higher trophic position and/or different pelagic-POM baseline in these areas.
Resumo:
We examined the use of mercury (Hg) and nitrogen and carbon stable isotopes in teeth of polar bear (Ursus maritimus) from Svalbard as biotracers of temporal changes in Hg pollution exposure between 1964 and 2003. Teeth were regarded as a good matrix of the Hg exposure, and in total 87 teeth of polar bears were analysed. Dental Hg levels ranged from 0.6 to 72.3 ng/g dry weight and increased with age during the first 10 years of life. A decreasing time trend in Hg concentrations was observed over the recent four decades while no temporal changes were found in the stable isotope ratios of nitrogen (d15N) and carbon (d13C). This suggests that the decrease of Hg concentrations over time was more likely due to a lower environmental Hg exposure in this region rather than a shift in the feeding habits of Svalbard polar bears.
Resumo:
In temperate, subpolar and polar marine systems, the classical perception that bacteria are carbon limited by end of winter and respond in activity and abundance to the production of new carbon during the diatom spring bloom and post bloom. Contrary to this view, we here document an strong increase in bacterial abundance and activity (latter measured by increasing high nuclei acid (HNA) to low nuclei acid (LNA) bacteria ratio) during the winter-spring transition, where phytoplankton smaller than 10 µm dominate. Further DNA-virus were enumerated and revealed the virus to bacteria ratio (VBR) to be decreasing during winter-spring transition, indicating that the virus did not increase in number accordingly to bacteria. During repeated visits to stations in the deep Icelandic and the Norwegian Basins and the shallow Shetland Shelf (26 March to 29 April 2012), we investigated the abundance of bacteria and the succession of HNA:LNA bacteria and VBR. Water samples were collected from CTD rosette .10 L Niskin bottles and fixed in glutaraldehyde (final conc. 5%), flash frozen in liquid Nitrogen and stored at -80°C until analysis.
Resumo:
In temperate, subpolar and polar marine systems, the classical perception is that diatoms initiate the spring bloom and thereby mark the beginning of the productive season. Contrary to this view, here we document an pre-bloom of pico- and nanophytoplankton prior to the diatom bloom; a period with excess nutrients and deep convection of the water column. During repeated visits to stations in the deep Icelandic and the Norwegian Basins and the shallow Shetland Shelf (26 March to 29 April 2012), we investigated the succession and dynamics of <10 µm phytoplankton. Water samples were collected from CTD rosette 10 L Niskin bottles and fixed in glutaraldehyde (final conc. 5%), flash frozen in liquid Nitrogen and stored at -80°C until analysis.
Resumo:
Ice-rich permafrost landscapes are sensitive to climate and environmental change due to the melt-out of ground ice during thermokarst development. Thermokarst processes in the northern Yukon Territory are currently not well-documented. Lake sediments from Herschel Island (69°36'N; 139°04'W) in the western Canadian Arctic provide a record of thermokarst lake development since the early Holocene. A 727 cm long lake sediment core was analyzed for radiographic images, magnetic susceptibility, granulometry, and biogeochemical parameters (organic carbon, nitrogen, and stable carbon isotopes). Based on eight calibrated AMS radiocarbon dates, the sediment record covers the last ~ 11,500 years and was divided into four lithostratigraphic units (A to D) reflecting different thermokarst stages. Thermokarst initiation at the study area began ~ 11.5 cal ka BP. From ~ 11.5 to 10.0 cal ka BP, lake sediments of unit A started to accumulate in an initial lake basin created by melt-out of massive ground ice and thaw subsidence. Between 10.0 and 7.0 cal ka BP (unit B) the lake basin expanded in size and depth, attributed to talik formation during the Holocene thermal maximum. Higher-than-modern summer air temperatures led to increased lake productivity and widespread terrain disturbances in the lake's catchment. Thermokarst lake development between 7.0 and 1.8 cal ka BP (unit C) was characterized by a dynamic equilibrium, where lake basin and talik steadily expanded into ambient ice-rich terrain through shoreline erosion. Once lakes become deeper than the maximum winter lake ice thickness, thermokarst lake sediments show a great preservation potential. However, site-specific geomorphic factors such as episodic bank-shore erosion or sudden drainage through thermo-erosional valleys or coastal erosion breaching lake basins can disrupt continuous deposition. A hiatus in the record from 1.8 to 0.9 cal ka BP in Lake Herschel likely resulted from lake drainage or allochthonous slumping due to collapsing shore lines before continuous sedimentation of unit D recommenced during the last 900 years.
Resumo:
This study addresses the problem of diagenetic fractionation of d15N in sedimentary organic matter by constructing isotopic mass balances for the sedimentary nitrogen and pore water ammonium at two Ocean Drilling Program (ODP) sites, 1227 and 1230. At Site 1230, ammonium production flux integrated through the sedimentary column indicates that >60% of organic matter is lost to decomposition. The d15N of pore water ammonium is <0.7 per mil different from that of the sedimentary organic matter, which implies that very little isotopic fractionation is associated with degradation of organic matter at this site. The constant d15N of the solid-phase sedimentary nitrogen through the whole profile supports this conclusion. Atomic C/N ratios (9-12) indicate that organic matter at this site is primarily of marine origin. At Site 1227, the sedimentary organic matter appears to be a mixture of terrestrial and marine components. Ammonium is ~4 heavier than the organic matter. The observed isotopic enrichment of pore water ammonium relative to the sedimentary nitrogen might indicate either the preferential decomposition of isotopically heavier marine fraction of the organic matter, or possibly, a nonsteady-state condition of the ammonium concentration and d15N profiles. Interpretation of the results at Site 1227 is further complicated by the contribution of ammonium with d15N of ~4 per mil that is diffusing upward from Miocene brines.
Resumo:
Twenty-four sediment samples from DSDP Holes 605 (Leg 93) and 613 (Leg 95) on the New Jersey continental rise were analyzed by pyrolysis-gas chromatography. Twelve of these samples were also analyzed by pyrolysis-gas chromatography/mass spectrometry. The degree of preservation of sediment organic matter, as determined by these techniques, helped to distinguish slumped sediments from sediments that have not moved from their original place of deposition. Total levels of pyrolyzable organic material, as determined from pyrolysis-gas chromatography, were low in sediments that were not slumped, indicating that the organic material is highly degraded. Nitrogen- and oxygen-containing compounds were the primary compounds detected by gas chromatography/mass spectrometry (GCMS) analysis of the pyrolyzate of non-slumped sediments. Smaller amounts of aromatic compounds and branched alkanes were also present in some of these samples. In contrast, slumped sediments showed larger amounts of pyrolyzable organic matter, as determined from pyrolysis-gas chromatography, and better preservation of alkyl chains in the sediment organic matter, as suggested by the presence of n-alkanes in GCMS analysis of the pyrolyzate. Better preservation of the organic matter in slumped sediments can be attributed to more moderate bioturbation by bottom-dwelling organisms at the original deposition site.
Resumo:
Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (<0.4 µm) obtained by Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased, resulting in a higher similarity of both sample types in the deep sediment. In summary, Soxhlet extraction of sediments accessed a larger and more complex pool of organic matter than present in interstitial water DOM.
Resumo:
Results of studying isotopic composition of helium in underground fluids of the Baikal-Mongolian region during the last quarter of XX century are summarized. Determinations of 3He/4He ratio in 139 samples of gas phase from fluids, collected at 104 points of the Baikal rift zone and adjacent structures are given. 3He/4He values lie within the range from 1x10**-8 (typical for crustal radiogenic helium) to 1.1x10**-5 (close to typical MORB reservoir). Repeated sampling in some points during more than 20 years showed stability of helium isotopic composition in time in each of them at any level of 3He/4He values. There is no systematic differences of 3He/4He in samples from surface water sources and deeper intervals of boreholes in the same areas. Universal relationship between isotopic composition of helium and general composition of gas phase is absent either, but the minimum 3He/4He values occurred in methane gas of hydrocarbon deposits, whereas in nitrogen and carbon dioxide gases of helium composition varied (in the latter maximum 3He/4He values have been measured). According to N2/Ar_atm ratio nitrogen gases are atmospheric. In carbonic gas fN2/fNe ratio indicates presence of excessive (non-atmogenic) nitrogen, but the attitude CO2/3He differs from one in MORB. Comparison of helium isotopic composition with its concentration and composition of the main components of gas phase from fluids shows that it is formed under influence of fractionation of components with different solubility in the gas-water system and generation/consumption of reactive gases in the crust. Structural and tectonic elements of the region differ from the spectrum of 3He/4He values. At the pre-Riphean Siberian Platform the mean 3He/4He = (3.6+/-0.9)x10**- 8 is very close to radiogenic one. In the Paleozoic crust of Khangay 3He/4He = (16.3+/-4.6)x10**-8, and the most probable estimate is (12.3+/-2.9)x10**-8. In structures of the eastern flank of the Baikal rift zone (Khentei, Dauria) affected by the Mz-Kz activization 3He/4He values range from 4.4x10**-8 to 2.14x10**-6 (average 0.94x10**-6). Distribution of 3He/4He values across the strike of the Baikal rift zone indicates advective heat transfer from the mantle not only in the rift zone, but also much further to the east. In fluids of the Baikal rift zone range of 3He/4He values is the widest: from 4x10**-8 to 1.1x10**-5. Their variations along the strike of the rift zone are clearly patterned, namely, decrease of 3He/4He values in both directions from the Tunka depression. Accompanied by decrease in density of conductive heat flow and in size of rift basins, this trend indicates decrease in intensity of advective heat transfer from the mantle to peripheral segments of the rift zone. Comparing this trend with data on other continental rift zones and mid-ocean ridges leads to the conclusion about fundamental differences in mechanisms of interaction between the crust and the mantle in these environments.
Resumo:
This data set contains measurements of dissolved nitrogen (total dissolved nitrogen: TDN, dissolved organic nitrogen: DON, dissolved ammonium: NH4+, and dissolved nitrate: NO3-) in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for nitrate (NO3-) and ammonium (NH4+) concentrations with a continuous flow analyzer (CFA, Skalar, Breda, The Netherlands). Nitrate was analyzed photometrically after reduction to NO2- and reaction with sulfanilamide and naphthylethylenediamine-dihydrochloride to an azo-dye. Our NO3- concentrations contained an unknown contribution of NO2- that is expected to be small. Simultaneously to the NO3- analysis, NH4+ was determined photometrically as 5-aminosalicylate after a modified Berthelot reaction. The detection limits of NO3- and NH4+ were 0.02 and 0.03 mg N L-1, respectively. Total dissolved N in soil solution was analyzed by oxidation with K2S2O8 followed by reduction to NO2- as described above for NO3-. Dissolved organic N (DON) concentrations in soil solution were calculated as the difference between TDN and the sum of mineral N (NO3- + NH4+). In 5% of the samples, TDN was equal to or smaller than mineral N. In these cases, DON was assumed to be zero.
Resumo:
This data set contains measurements of dissolved nitrogen (total dissolved nitrogen: TDN, dissolved organic nitrogen: DON, dissolved ammonium: NH4+, and dissolved nitrate: NO3-) in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for nitrate (NO3-) and ammonium (NH4+) concentrations with a continuous flow analyzer (CFA, Skalar, Breda, The Netherlands). Nitrate was analyzed photometrically after reduction to NO2- and reaction with sulfanilamide and naphthylethylenediamine-dihydrochloride to an azo-dye. Our NO3- concentrations contained an unknown contribution of NO2- that is expected to be small. Simultaneously to the NO3- analysis, NH4+ was determined photometrically as 5-aminosalicylate after a modified Berthelot reaction. The detection limits of NO3- and NH4+ were 0.02 and 0.03 mg N L-1, respectively. Total dissolved N in soil solution was analyzed by oxidation with K2S2O8 followed by reduction to NO2- as described above for NO3-. Dissolved organic N (DON) concentrations in soil solution were calculated as the difference between TDN and the sum of mineral N (NO3- + NH4+). In 5% of the samples, TDN was equal to or smaller than mineral N. In these cases, DON was assumed to be zero.
Resumo:
The sediments of Hydrate Ridge/Cascadia margin contain extensive amounts of gas hydrate. A total of 57 sediment samples including gas hydrate were preserved in liquid nitrogen and have been imaged using computerized tomography to visualize hydrate distribution and shape. The analysis gives evidence that gas hydrate in vein and veinlet structures is the predominant shape in the deeper gas hydrate stability zone with dipping angles from 30° to 90°(vertical).