759 resultados para Inductively coupled plasma (ICP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ca. 1880 Ma Circum-Superior Large Igneous Province (LIP) consists of a number of discontinuous segments known to cover a significant portion of the margin of the Superior Province craton in North America. New geochemical and isotopic data from western segments of this LIP support a common origin for the these segments and suggest that magmatism in the Lake Superior region may have been fed through the ~ 600 km long Pickle Crow dyke from a source north of the Fox River Belt in northeastern Manitoba. The Fox River Belt, Pickle Crow dyke and sections of the Hemlock Formation in the Lake Superior region possess trace element signatures which are similar to those of more recent oceanic plateaux. The Hemlock Formation displays a heterogeneous geochemical signature. This chemical heterogeneity can in part be explained by lithospheric contamination and possibly by source heterogeneity. The tectonomagmatic setting in which these igneous rocks were formed could have involved a mantle plume. Evidence supporting a plume origin includes high MgO volcanic rocks, high calculated degrees of partial melting and geochemical signatures similar to those of oceanic plateaux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study of basaltic debris from the Kara Sea bottom has shown its similarity to traps of the Eastern Siberia in mineralogy, structures and chemical composition. In comparison with oceanic tholeiites, the source of traps and Kara Sea basin basaltic melts was enriched in REE and some other incompatible elements. K-Ar dating of two samples of supposed autochtonous location from the eastern part of the Kara Sea basin has shown 209 and 218 Ma - younger than traps (247-248 Ma). Origin of Siberian traps used to connect with action of the mantle plume (Iceland plume, according to geodinamic reconstruction). Our new age data may be interpreted as an evidence of the Siberian plate moving over the head of plume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium-isotope ratios (d44/42Ca) were measured in carbonate-rich sedimentary sections deposited during Oceanic Anoxic Events 1a (Early Aptian) and 2 (Cenomanian-Turonian). In sections from Resolution Guyot, Mid-Pacific Mountains; Coppitella, Italy; and the English Chalk at Eastbourne and South Ferriby, UK, a negative excursion in d44/42Ca of ~0.20 per mil and ~0.10 per mil is observed for the two events. These d44/42Ca excursions occur at the same stratigraphic level as the carbon-isotope excursions that define the events, but do not correlate with evidence for carbonate dissolution or lithological changes. Diagenetic and temperature effects on the calcium-isotope ratios can be discounted, leaving changes in global seawater composition as the most probable explanation for d44/42Ca changes in four different carbonate sections. An oceanic box model with coupled strontium- and calcium-isotope systems indicates that a global weathering increase is likely to be the dominant driver of transient excursions in calcium-isotope ratios. The model suggests that contributions from hydrothermal activity and carbonate dissolution are too small and short-lived to affect the oceanic calcium reservoir measurably. A modelled increase in weathering flux, on the order of three times the modern flux, combined with increased hydrothermal activity due to formation of the Ontong-Java Plateau (OAE1a) and Caribbean Plateau (OAE2), can produce trends in both calcium and strontium isotopes that match the signals recorded in the carbonate sections. This study presents the first major-element record of a weathering response to Oceanic Anoxic Events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty-nine surface samples from the Portuguese shelf, recovered offshore from the mouths of the Ave, Douro, Lis and Mira rivers, were analysed using ICP-OES for selected major and trace elements, after total dissolution. Organic carbon, carbonate content and grain size were also determined. Five evaluation tools have been applied in order to compare the three study areas and to evaluate sediment geochemistry and other sediment compositional variability in the acquired samples: (1) empirical methods based on comparison with standard reference criteria, e.g. the NOAA sediment quality guidelines, (2) normalisation ratios using a grain-size proxy element, (3) "Gradient Method", plotting contaminant vs. organic matter or Al, (4) definition of a regional geochemical baseline from a compiled database, and (5) enrichment factors. The evaluation of element and component associations indicates differences related both to the onshore drainage areas and to the environmental shelf setting. Despite the considerable variability in total metal contents indicated by our results, the sediment metal composition is largely of natural origin. Metal enrichments observed in the Mira area are associated with the drainage of mineralised areas rich in Cu, Pb, Zn, Fe and Mn. The near absence of human impact on shelf sediments, despite the vicinity to urban areas with high industrialisation levels, such as the Ave-Douro and Lis areas, is attributed to effective trapping in the estuaries and coastal zones, as well dilution with less contaminated sediments shelf sediments and removal with fine fractions due to grain-size sorting. The character of the contaminated sediments transported to these shelf areas is further influenced by grain-size sorting as well as by dilution with less contaminated marine sediments. The results obtained individually by the different methods complement each other and allow more specific interpretations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferromanganese crusts, nodules, and ferromanganese-rich sediments were recovered on the Wombat Plateau, northwest Australian continental margin, by dredging during Bureau of Mineral Resources cruise 56 of Rig Seismic and by drilling during ODP Leg 122 of JOWES Resolution. We report here the chemistry and mineralogy of the ferromanganese crusts, nodules, and associated ferromanganese-rich sediments. The ferromanganese deposits from the ODP sites are up to 40 cm thick and probably formed in Late Cretaceous to Eocene times. Those from outcrops usually formed in several phases, and their age is unconstrained except that the substrates are Mesozoic. The samples were recovered from present-day water depths of 2000-4600 m, on the Wombat Plateau adjacent to the Argo Abyssal Plain. Both the nodules and crusts are primarily vernadite (delta-MnO2) and are chemically and mineralogically similar, and not dissimilar from ferromanganese deposits found elsewhere on Australian and other marginal plateaus. They are markedly different from most deep-sea deposits. The only crystalline iron phase identified within the ferromanganese deposits is goethite. Concentrations of metals of potential economic interest are generally low compared to those from vernadite-rich seamount crusts and nodules and from abyssal nodules from areas of high resource potential in the Pacific Ocean. Maximum metal values reach 0.55% Co, 0.58% Ni, and 0.20% Cu in deposits containing 4.8% to 30.9% Fe and 4.4% to 21.1% Mn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The igneous geochemistry of lavas and breccias from the basement of Sites 790 and 791, and pumice clasts from the Pliocene-Pleistocene sedimentary section of Sites 788, 790, 791, and 793 were studied. Arc volcanism became silicic about 1.5 m.y. before the inception of rifting in the Sumisu Rift at 2 Ma, but eruption of these silicic magmas reflects changes in stress regime, especially during the last 130,000 yr, rather than crustal anatexis. Arc magmas have had a larger proportion of slab-derived components since the inception of rifting than before, but are otherwise similar. Rift basalts and rhyolites are derived from a different source than are arc andesites to rhyolites. The rift source has less slab-derived material and is an E-MORB-like source, in contrast to an N-MORB-type source overprinted with more slab-derived material beneath the arc. Rift magma types, in the form of rare pumice and lithic clasts, preceded the rift, and the earliest magmas that erupted in the rift already differed from those of the arc. The earliest large rift eruption produced an exotic explosion breccia ("mousse") despite eruption at >1800 mbsl. Although this rock type is attributed primarily to high magmatic water content, the clasts are more MORB-like in trace element and isotopic composition than are modern Mariana Trough basalts. After rifting began, arc volcanism continued to be predominantly silicic, with individual pumice deposits containing clasts that vary in composition by about 5 wt% SiO2, or about as much as in historical eruptions of submarine Izu Arc volcanoes. The overall variations in magma composition with time during the inception of arc rifting are broadly similar in the Sumisu Rift and Lau Basin, though newly tapped OIB-type mantle seems to be present earlier during basin formation in the Sumisu than Lau case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of new bulk major and trace element (including REE) as well as Sm-Nd and Rb-Sr isotope data, used in conjunction with available geochronological data, a post-tectonic mafic igneous province and four groups of pre- to syntectonic amphibolite are distinguished in the polymetamorphic Maud Belt of western Dronning Maud Land, East Antarctica. Protoliths of the Group 1 amphibolites are interpreted as volcanic arc mafic intrusions with Archaean to Palaeoproterozoic Nd model ages and depletion in Nb and Ta. Isotopic and lithogeochemical characteristics of this earliest group of amphibolite indicate that the Maud Belt was once an active continental volcanic arc. The most likely position of this arc, for which a late Mesoproterozoic age (c. 1140 Ma) is indicated by available U-Pb single-zircon age data, was on the southeastern margin of the Kaapvaal-Grunehogna Craton. The protoliths of Group 2 amphibolites are attributed to the 1110 Ma Borgmassivet-Umkondo thermal event on the basis of comparable Nd model ages and trace element distributions. Group 3 amphibolite protoliths are characterized by mid-ocean ridge basalt-type REE patterns and low Th/Yb ratios, and they are related to Neoproterozoic extension. Group 4 amphibolite protoliths are distinguished by high Dy/Yb ratios and are attributed to a phase of syntectonic Pan-African magmatism as indicated by Rb-Sr isotope data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the systematics of Cl, F and H2O in Izu arc front volcanic rocks using basaltic through rhyolitic glass shards and melt inclusions (Izu glasses) from Oligocene to Quaternary distal fallout tephra. These glasses are low-K basalts to rhyolites that are equivalent to the Quaternary lavas of the Izu arc front (Izu VF). Most of the Izu glasses have Cl ~400-4000 ppm and F ~70-400 ppm (normal-group glasses). Rare andesitic melt inclusions (halogen-rich andesites; HRA) have very high abundances of Cl (~6600-8600 ppm) and F (~780-910 ppm), but their contents of incompatible large ion lithophile elements (LILE) are similar to the normal-group glasses. The preeruptive H2O of basalt to andesite melt inclusions in plagioclase is estimated to range from ~2 to ~10 wt% H2O. The Izu magmas should be undersaturated in H2O and the halogens at their preferred levels of crystallization in the middle to lower crust (~3 to ~11 kbar, ~820° to ~1200°C). A substantial portion of the original H2O is lost due to degassing during the final ascent to surface. By contrast, halogen loss is minor, except for loss of Cl from siliceous dacitic and rhyolitic compositions. The behavior of Cl, F and H2O in undegassed melts resembles the fluid mobile LILE (e.g.; K, Rb, Cs, Ba, U, Pb, Li). Most of the Cl (>99%), H2O (>95%) and F (>53%) in the Izu VF melts appear to originate from the subducting slab. At arc front depths, the slab fluid contains Cl = 0.94+/-0.25 wt%, F = 990+/-270 ppm and H2O = 25+/-7 wt%. If the subducting sediment and the altered basaltic crust were the only slab sources, then the subducted Cl appears to be almost entirely recycled at the Izu arc (~77-129%). Conversely, H2O (~13-22% recycled at arc) and F (~4-6% recycled) must be either lost during shallow subduction or retained in the slab to greater depths. If a seawater-impregnated serpentinite layer below the basaltic crust were an additional source of Cl and H2O, the calculated percentage of Cl and H2O recycled at arc would be lower. Extrapolating the Izu data to the total length of global arcs (~37000 km), the global arc outflux of fluid-recycled Cl and H2O at subduction zones amounts to Cl ~2.9-3.8 mln ton/yr and H2O ~70-100 mln ton/yr, respectively - comparable to previous estimates. Further, we obtain a first estimate of global arc outflux of fluid-recycled F of ~0.3-0.4 mln ton/yr. Despite the inherent uncertainties, our results support models suggesting that the slab becomes strongly depleted in Cl and H2O in subduction zones. In contrast, much of the subducted F appears to be returned to the deep mantle, implying efficient fractionation of Cl and H2O from F during the subduction process. However, if slab devolatilization produces slab fluids with high Cl/F (~9.5), slab melting will still produce components with low Cl/F ratios (~0.9), similar to those characteristic of the upper continental crust (Cl/F ~0.3-0.9).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the South Chamorro Seamount in the Mariana subduction zone, geochemical data of pore fluids recovered from Ocean Drilling Program Leg 195 Site 1200 indicate that these fluids evolved from dehydration of the underthrusting Pacific plate and upwelling of fluids to the surface through serpentinite mud volcanoes as cold springs at their summits. Physical conditions of the fluid source at 27 km were inferred to be at 100°-250°C and 0.8 GPa. The upwelling of fluid is more active near the spring in Holes 1200E and 1200A and becomes less so with increasing distance toward Hole 1200D. These pore fluids are depleted in Cl and Br, enriched in F (except in Hole 1200D) and B (up to 3500 µM), have low 11B (16-21), and have lower than seawater Br/Cl ratios. The mixing ratios between seawater and pore fluids is calculated to be ~2:1 at shallow depth. The F, Cl, and Br concentrations, together with B concentrations and B isotope ratios in the serpentinized igneous rocks and serpentine muds that include ultramafic clasts from Holes 1200A, 1200B, 1200D, 1200E, and 1200F, support the conclusion that the fluids involved in serpentinization originated from great depths; the dehydration of sediments and altered basalt at the top of the subducting Pacific plate released Cl, H2O, and B with enriched 10B. Calculation from B concentrations and upwelling rates indicate that B is efficiently recycled through this nonaccretionary subduction zone, as through others, and may contribute the critical missing B of the oceanic cycle.