716 resultados para Granitic rocks
Resumo:
As a result of a petrographical, mineralogical and geochemical characterization of the Ameghino Formation mudstones (Upper Jurassic- Lower Cretaceous, Antarctic Peninsula), "epiclastic" radiolaria-rich and mixed (radiolaria-rich + tuff) mudstone types were recognized. Contents of clastic material in the mudstones generally increase with younger paleontological age, but local exceptions to this trend have been found. The anoxic environment of the lower part of the sequence changes to more oxidizing conditions towards the top, in transition to the Hauterivian - Barrêmian conglomerates. Element to element correlations show good agreement with the normal differentiation trends of volcanic (andesite-rhyolite) rocks, suggesting that the overall sequence is mainly volcanic in origin with various grade of reworking. For example, the radiolaria-rich mudstone matrix could have been originated from very fine touffaceous suspensions deposited very slowly after the main fall of the tuffs. However, in the upper part of the sequence, some epiclastic supply is revealed by petrographic evidence and illite crystallinity index. The clay mineral association (illite, chlorite and illite-smectite mixed layers) is mainly of diagenetic origin in the stratigraphically lower sections. Low percentages of expandable layers in the illite-smectite mixed layers, as well as the general mineralogical association, suggest a late mesodiagenetic stage, and together with geological evidence, a relatively deep burial (> 1000 m - probably > 2500 m) and temperatures exceeding 100°C.
Resumo:
A number of intensely altered, dark xenoliths with palimpsest quench textures were recorded within altered dacitic host rocks at Site 1189 (Roman Ruins, PACMANUS) during Ocean Drilling Program (ODP) Leg 193. Several of these displayed puzzling marginal fringes, apparently of altered plagioclase with variolitic texture, protruding into adjacent host rocks. Despite their alteration, the xenoliths were interpreted as fragments of rapidly chilled, possibly olivine-bearing basalts incorporated into the dacitic magmas either within the crustal plumbing system or during eruption at the seafloor (figures F15, F16, F17, F42, and F43 in Shipboard Scientific Party, 2002, doi:10.2973/odp.proc.ir.193.104.2002). An additional example of formerly spinifex-textured xenolith, the first from Site 1188 (Snowcap) and the first from the upper cristobalite-bearing zone of alteration, has been revealed by postcruise studies. Furthermore, a pristine sample of the parent lithology has been found within a dredge haul (MD-138, Binatang-2000 Cruise of Franklin; 3°43.60'S, 151°40.35'E, 1688 meters below sea level) from the Satanic Mills hydrothermal field at PACMANUS, near ODP Site 1191. The purpose of this report is to document these discoveries and thereby to confirm and build on shipboard interpretations. To my knowledge, similar xenoliths have never before been found in modern island arc or backarc volcanic sequences. Spinifex textures are most common in Archean komatiites, some of which are bimodally associated with calc-alkaline felsic volcanic rocks.
Resumo:
Geological features of some areas of the Tropical Atlantic (stratigraphy, tectonic structure, lithology, distribution of ore components in bottom sediments, petrography of bedrocks, etc.) are under consideration in the book. Regularities of concentration of trace elements in iron-manganese nodules, features of these nodules in bottom sediments, distribution of phosphorite nodules and other phosphorites have been studied. Much attention is paid to rocks of the ocean crust. A wide range of mineralization represented by magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals has been found.
Resumo:
Ocean Drilling Program Leg 129 recovered chert, porcellanite, and radiolarite from Middle Jurassic to lower Miocene strata from the western Pacific that formed by different processes and within distinct host rocks. These cherts and porcellanites formed by (1) replacement of chalk or limestone, (2) silicification and in-situ silica phase-transformation of bedded clay-bearing biosiliceous deposits, (3) high-temperature silicification adjacent to volcanic flows or sills, and (4) silica phase-transformation of mixed biosiliceous-volcaniclastic sediments. Petrologic and O-isotopic studies highlight the key importance of permeability and time in controlling the formation of dense cherts and porcellanites. The formation of dense, vitreous cherts apparently requires the local addition and concentration of silica. The influence of permeability is shown by two examples, in which: (1) fragments of originally identical radiolarite that were differentially isolated from pore-water circulation by cement-filled fractures were silicified to different degrees, and (2) by the development of secondary porosity during the opal-CT to quartz inversion within conditions of negligible permeability. The importance of time is shown by the presence of quartz chert below, but not above, a Paleogene hiatus at Site 802, indicating that between 30 and 52 m.y. was required for the formation of quartz chert within calcareous-siliceous sediments. The oxygen-isotopic composition for all Leg 129 carbonate- and Fe/Mn-oxide-free whole-rock samples of chert and porcellanite range widely from d18O = 27.8 per mil to 39.8 per mil vs. V-SMOW. Opal-CT samples are consistently richer in 18O (34.1 per mil to 39.3 per mil) than quartz subsamples (27.8 per mil to 35.7 per mil). Using the O-isotopic fractionation expression for quartz-water of Knauth and Epstein (1976) and assuming d18Opore water = -1.0 per mil, model temperatures of formation are 7°-26°C for carbonate-replacement quartz cherts, 22°-25°C for bedded quartz cherts, and 32°-34°C for thermal quartz cherts. Large variations in O-isotopic composition exist at the same burial depth between co-existing silica phases in the same sample and within the same phase in adjacent lithologies. For example, quartz has a wide range of isotopic compositions within a single breccia sample; d18O = 33.4 per mil and 28.0 per mil for early and late stages of fracture-filling cementation, and 31.6 per mil and 30.2 per mil for microcrystalline quartz precipitation within enclosed chert and radiolarite fragments. Similarly, opal-CT d101 spacing varies across lithologic or diagenetic boundaries within single samples. Co-occurring opal-CT and chalcedonic quartz in shallowly buried chert and porcellanite from Sites 800 and 801 have an 8.7 per mil difference in d18O, suggesting that pore waters in the Pigafetta Basin underwent a Tertiary shift to strongly 18O-depleted values due to alteration of underlying Aptian to Albian-Cenomanian volcaniclastic deposits after opal-CT precipitation, but prior to precipitation of microfossil-filling chalcedony.
Resumo:
Manganese-iron oxide concretions are presently forming on Patrick Sill in upper Jervis Inlet. The marine geology of Patrick Sill and the adjoining basins (Queen's Reach and Princess Royal Reach) was studied to define the environment in which the concretions form. The river at the inlet head is the principal source of sediment to the upper basin. The average grain size of surficial bottom sediments within this basin decreases uniformly with distance from the source. Patrick Sill separates the upper from the lower basin. The sediment distribution pattern within the lower basin differs markedly from the upper basin as there is no dominant source of material but rather many localized sources. Abundant shallow marine faunal remains recovered in deep water sediment samples indicate that sediments deposited as deltas off river and stream mouths periodically slump to the basin floors. Geologic and optical turbidity information for the upper basin can best be explained by slumping from the delta at the inlet head with the initiation of turbidity or density currents. Patrick Sill appears to create a downstream barrier to this flow. The mineralogy of the bottom sediments indicates derivation from a granitic terrain. If this is so, the sediments presently being deposited in both basins are reworked glacial materials initially derived by glacial action outside the present watershed. Upper Jervis Inlet is mapped as lying within a roof pendant of pre-batholithic rocks, principally slates. Patrick Sill is thought to be a bedrock feature mantled with Pleistocene glacial material. The accumulation rate of recent sediments on the sill is low especially in the V-notch or medial depression. The manganese-iron oxide concretions are forming within the depression and apparently nowhere else in the study area. Also forming within the depression are crusts of iron oxide and what are tentatively identified as glauconite-montmorillonoid pellets. The concretions are thought to form by precipitation of manganese-iron oxides on pebbles and cobbles lying at the sediment water interface. The oxide materials are mobile in the reducing environment of the underlying clayey-sand sediment but precipitate on contact with the oxygenating environment of the surficial sediments. The iron crusts are thought to be forming on extensive rocky surfaces above the sediment water interface. The overall appearance and evidence of rapid formation of the crusts suggests they formed from a gel in sea water. Reserves of manganese-iron concretions on Patrick Sill were estimated to be 117 metric tons. Other deposits of concretions have recently been found in other inlets and in the Strait of Georgia but, to date, the extent of these has not been determined.