693 resultados para Annan Seamount, Atlantic Ocean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of planktonic foraminifera study, thickness of Holocene sediments has been ascertained in 60 sediment cores from various regions of the Atlantic Ocean. Ratios of species reflect warming of the upper water layer at the Pleistocene-Holocene boundary over the entire ocean. The Holocene boundary can be determined not only from microfaunal data, but also from lithologic ones including textural and structural features. Increase in CaCO3 contents in Holocene sediments as compared to Pleistocene is from 5-7% to 60-70% in different parts of the ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Cruise 46 of R/V Akademik Mstislav Keldysh (from June to September 2001), vertical distributions of Radiolaria (Acantharia - Bac and Euradiolaria - Beur), mesozooplankton (from 0.2 to 3.0 mm size, Bm), and chlorophyll a (Cchl) in the epipelagic zone of the North Atlantic were studied. To examine the above-listed characteristics, samples were taken by Niskin 30 l bottles from 12-16 depth levels within the upper 100 to 200 m layer in the subarctic (48°11'N, 16°06'W) and subtropical (27°31'N, 75°51'W) waters, as well as in the transitional zone (41°44'N, 49°57'W). The latter proved to be characterized by the highest values of all averaged parameters examined by us within the upper 100 m layer (Bm - 365mg/m**3, Bac - 140 mg/m**3, Beur - 0.37 mg/m**3, and Cchl - 0.32 mg/m**3). For subarctic and subtropical waters corresponding characteristics were as follows: Bm - 123 and 53 mg/m**3, Bac - 0 and 0.06 mg/m**3, Beur - 0.17 and 0.19 mg/m**3, and Cchl - 0.27 and 0.05 mg/m**3, respectively. Percentage of Acantharia in total biomass of Radiolaria and zooplankton ranged from 0 to 39%, whereas that of Euradiolaria varied from 0.01 to 0.36%. Depth levels with maximum abundance of Acantharia were located above maxima of zooplankton and chlorophyll a or coincided with them. As for Euradiolaria, vertical profiles of their biomass were more diverse as compared with Acantharia. The latter group preferred more illuminated depth levels for its maximum development (10-100% of surface irradiance, E0) with respect to Euradiolaria (1-60% of E0). Possible reasons for this difference are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fossil shells of planktonic foraminifera serve as the prime source of information on past changes in surface ocean conditions. Because the population size of planktonic foraminifera species changes throughout the year, the signal preserved in fossil shells is biased towards the conditions when species production was at its maximum. The amplitude of the potential seasonal bias is a function of the magnitude of the seasonal cycle in production. Here we use a planktonic foraminifera model coupled to an ecosystem model to investigate to what degree seasonal variations in production of the species Neogloboquadrina pachyderma may affect paleoceanographic reconstructions during Heinrich Stadial 1 (~18-15 cal. ka B.P.) in the North Atlantic Ocean. The model implies that during Heinrich Stadial 1 the maximum seasonal production occurred later in the year compared to the Last Glacial Maximum (~21-19 cal. ka B.P.) and the pre-industrial era north of 30 ºN. A diagnosis of the model output indicates that this change reflects the sensitivity of the species to the seasonal cycle of sea-ice cover and food supply, which collectively lead to shifts in the modeled maximum production from the Last Glacial Maximum to Heinrich Stadial 1 by up to six months. Assuming equilibrium oxygen isotopic incorporation in the shells of N. pachyderma, the modeled changes in seasonality would result in an underestimation of the actual magnitude of the meltwater isotopic signal recorded by fossil assemblages of N. pachyderma wherever calcification is likely to take place.