423 resultados para Absorption and attenuation meter AC-9
Resumo:
These studies were performed from September 10 to 29, 2007 in the Kara Sea in transects westward of the Yamal Peninsula, near the St. Anna Trough, in the Ob River estuary (Obskay Guba), and on the adjacent shelf. Concentration of chlorophyll a in the euphotic layer varied from 0.02 to 4.37 µg/l, aver. 0.76 µg/l. Primary production in the water column varied from 10.9 to 148.0 mg C/m**2/day (aver. 56.9 mg C/m**2/day). It was shown that frontal zones divided the Kara Sea into distinct areas with different productivities. Maximum levels of primary production were measured in the deep part of the Yamal transect (132.4 mg C/m**2/day) and the shallow Kara Sea shelf near the Ob River estuary (74.9 mg C/m**2/day). Characteristics of these regions were low salinity of the surface water layer (19-25 psu) and elevated silicon concentration (12.8-28.1 µg-atom/l). It is explainable by river runoff. Frontal zones of the Yamal current within the Yamal and Ob transects showed high assimilation numbers reached to 2.32 and 1.49 mg C/mg Chl/hr, respectively; they were maximal for studied areas.
Resumo:
Detailed information about the sediment properties and microstructure can be provided through the analysis of digital ultrasonic P wave seismograms recorded automatically during full waveform core logging. The physical parameter which predominantly affects the elastic wave propagation in water-saturated sediments is the P wave attenuation coefficient. The related sedimentological parameter is the grain size distribution. A set of high-resolution ultrasonic transmission seismograms (ca. 50-500 kHz), which indicate downcore variations in the grain size by their signal shape and frequency content, are presented. Layers of coarse-grained foraminiferal ooze can be identified by highly attenuated P waves, whereas almost unattenuated waves are recorded in fine-grained areas of nannofossil ooze. Color-encoded pixel graphics of the seismograms and instantaneous frequencies present full waveform images of the lithology and attenuation. A modified spectral difference method is introduced to determine the attenuation coefficient and its power law a = kfn. Applied to synthetic seismograms derived using a "constant Q" model, even low attenuation coefficients can be quantified. A downcore analysis gives an attenuation log which ranges from ca. 700 dB/m at 400 kHz and a power of n = 1-2 in coarse-grained sands to few decibels per meter and n ? 0.5 in fine-grained clays. A least squares fit of a second degree polynomial describes the mutual relationship between the mean grain size and the attenuation coefficient. When it is used to predict the mean grain size, an almost perfect coincidence with the values derived from sedimentological measurements is achieved.
Resumo:
Ocean acidification (OA) is a reduction in oceanic pH due to increased absorption of anthropogenically produced CO2. This change alters the seawater concentrations of inorganic carbon species that are utilized by macroalgae for photosynthesis and calcification: CO2 and HCO3 increase; CO32 decreases. Two common methods of experimentally reducing seawater pH differentially alter other aspects of carbonate chemistry: the addition of CO2 gas mimics changes predicted due to OA, while the addition of HCl results in a comparatively lower [HCO3]. We measured the short-term photosynthetic responses of five macroalgal species with various carbon-use strategies in one of three seawater pH treatments: pH 7.5 lowered by bubbling CO2 gas, pH 7.5 lowered by HCl, and ambient pH 7.9. There was no difference in photosynthetic rates between the CO2, HCl, or pH 7.9 treatments for any of the species examined. However, the ability of macroalgae to raise the pH of the surrounding seawater through carbon uptake was greatest in the pH 7.5 treatments. Modeling of pH change due to carbon assimilation indicated that macroalgal species that could utilize HCO3 increased their use of CO2 in the pH 7.5 treatments compared to pH 7.9 treatments. Species only capable of using CO2 did so exclusively in all treatments. Although CO2 is not likely to be limiting for photosynthesis for the macroalgal species examined, the diffusive uptake of CO2 is less energetically expensive than active HCO3 uptake, and so HCO3-using macroalgae may benefit in future seawater with elevated CO2.