558 resultados para organic matter input
Resumo:
The quantity, type, and maturity of organic matter of Quaternary and Tertiary sediments from the Philippine Sea (DSDP Leg 58; Sites 442-446) were determined. Hydrocarbons in lipid extracts were analyzed by capillary-column gas chromatography. Kerogen concentrates were investigated by microscopy for vitrinite reflectance values and maceral composition. In the Shikoku Basin sediments (Sites 442, 443, and 444), organic carbon values range between 0.03 and 0.44 per cent. The higher values in the younger sediments are interpreted as an indication of increasing deposition of eroded organic particles during the past 4 m.y. Microscopic analyses revealed a dominance of reworked organic matter. Primary material could not be distinguished readily; thus, no maturation trend could be established. Extract yields were low. TV-alkane distributions mostly show maxima at n-C29 and n-C31 and high odd-over-even predominances, typical of material which originated in terrigenous higher plants. The organic-carbon values of sediments of the Daito Ridge and Basin region (Sites 444 and 445) range from less than 0.01 to 0.05 per cent. TV-alkanes exhibit varying marine and terrigenous influences. Some carbonate-rich samples show a pronounced even-over-odd predominance. At least the older sediments contained less recycled organic matter than the Shikoku Basin samples. The maturity, where measurable, was low. None of the Philippine Sea samples indicates a significant hydrocarbon-generation potential.
Resumo:
Concentrations of organic and mineral nitrogen and phosphorus in waters from different types of bays were determined during summer of 1987. Content of organic nitrogen in surface waters reached 80-97% of total; content of mineral phosphorus was 60-100%. Concentrations of N_org and P_org in deep waters decreased to 70 and 40%, respectively. Distribution of organic matter in the bays was controlled by river run-off.
Resumo:
Geochemical analyses of organic matter were carried out on Quaternary sediments from Sites 582 and 583 (Nankai Trough) and on Pliocene to Miocene sediments from Site 584 (Japan Trench), DSDP Leg 87, to evaluate petroleum-generating potential and to characterize the organic matter. The vitrinite-huminite reflectances of indigenous materials for these sites are less than 0.3% indicating the immature nature of the sediments. The sediments, however, contain remarkable amounts of recycled organic materials. The Quaternary sediments from Sites 582 and 583 contain small amounts of amorphous organic matter (less than 0.75 wt.% organic carbon and 66-90% amorphous debris), which is composed of predominantly recycled, oxidized, and over-matured (or matured) Type III material. The amount of hydrocarbon yield indicates that those sediments have lean-source potential for commercial hydrocarbon generation. The Pliocene to Miocene sediments from Site 584 contain organic matter (0.3-1.09 wt.% organic carbon) of predominantly amorphous debris (68-96%) that originated in two sources, an indigenous Type II material and a recycled, over-matured material. Pyrolysis shows an upward increase in the section of hydrocarbon yield and the same trend is also observed in organic-carbon content. The amount of the yield indicates that the Miocene sediments have lean-to-fair source potential and the Pliocene sediments have fair-to-good source potential.
Resumo:
Sediments were sampled and oxygen profiles of the water column were determined in the Indian Ocean off west and south Indonesia in order to obtain information on the production, transformation, and accumulation of organic matter (OM). The stable carbon isotope composition (d13Corg) in combination with C/N ratios depicts the almost exclusively marine origin of sedimentary organic matter in the entire study area. Maximum concentrations of organic carbon (Corg) and nitrogen (N) of 3.0% and 0.31%, respectively, were observed in the northern Mentawai Basin and in the Savu and Lombok basins. Minimum d15N values of 3.7 per mil were measured in the northern Mentawai Basin, whereas they varied around 5.4 per mil at stations outside this region. Minimum bottom water oxygen concentrations of 1.1 mL L**1, corresponding to an oxygen saturation of 16.1%, indicate reduced ventilation of bottom water in the northern Mentawai Basin. This low bottom water oxygen reduces organic matter decomposition, which is demonstrated by the almost unaltered isotopic composition of nitrogen during early diagenesis. Maximum Corg accumulation rates (CARs) were measured in the Lombok (10.4 g C m**-2 yr**-1) and northern Mentawai basins (5.2 g C m**-2 yr**-1). Upwelling-induced high productivity is responsible for the high CAR off East Java, Lombok, and Savu Basins, while a better OM preservation caused by reduced ventilation contributes to the high CAR observed in the northern Mentawai Basin. The interplay between primary production, remineralisation, and organic carbon burial determines the regional heterogeneity. CAR in the Indian Ocean upwelling region off Indonesia is lower than in the Peru and Chile upwellings, but in the same order of magnitude as in the Arabian Sea, the Benguela, and Gulf of California upwellings, and corresponds to 0.1-7.1% of the global ocean carbon burial. This demonstrates the relevance of the Indian Ocean margin off Indonesia for the global OM burial.
Resumo:
The Palynology of two sections recovered during Leg 93 drilling by the Deep Sea Drilling Project in the continental rise along the western margin of the North Atlantic is reported. In Hole 603B at Site 603, the dinoflagellate stratigraphy indicates that the interval from Cores 603B-82 to 603B-26 ranges in age from late Berriasian to Santonian. The BlakeBahama Formation ranges from late Berriasian to Aptian. The Hatteras Formation ranges from Aptian to Cenomanian, although the uppermost part may be Turonian. Dinoflagellate evidence from the middle part of the Plantagenet Formation indicates an age from late Coniacian or early Santonian to Santonian within the interval of Cores 603B-28 to 603B-26. Magnetic polarity evidence of the stratigraphy of the Early Cretaceous for the western North Atlantic indicates a reliable correlation with the dinoflagellate zonation. The stratigraphic sequence of palynologically defined organic facies in carbonaceous claystone lithologies in Hole 603B shows that organic stratigraphic units consisting predominantly of fecal-pellet-derived, pelagic organic matter (xenomorphic facies) alternate with units consisting predominantly of terrigenous organic matter (tracheal and exinitic facies), corresponding to that described from other sites in the North Atlantic. A terrigenous organic facies is identified for the first time from the Plantagenet Formation. The claystone organic facies and major lithofacies are closely correlated. The tracheal and exinitic facies occur in carbonaceous terrigenous claystones and claystone turbidites associated with sandstone/siltstone terrigenous turbidites. The xenomorphic facies occurs in claystones within pelagic limestones lacking any turbidites, and in blackish, noncalcareous claystones which correlate in age with the marine-carbon-rich sapropels which are widespread in the North Atlantic Cenomanian. This facies also occurs with an admixture of terrigenous organic particles in the Blake-Bahama Formation, but the mixture is consistent with the submarine fan setting of this interval. The concentration of refractory organic matter (carbonized particles) in the micrinitic and carbonized tracheal facies is considered to be the result, at least in part, of the oxidation of sediment buried below a surface slowly accumulating pelagic clays below the carbonate compensation depth. The progressive increase in number of dinoflagellate species per stage through the Early Cretaceous (except for the late Barremian-Aptian) may have resulted indirectly from the generally progressive rise in global sea level during this time. At Site 605, the dinoflagellate stratigraphy across the Cretaceous/Tertiary boundary is remarkably close to that published from the Maestrichtian and Danian of Denmark. The Maestrichtian/Danian boundary is placed precisely within Section 605-66-1 by dinoflagellate evidence, agreeing with that predicted by other microfossils. The new dinoflagellate-cyst-based genus, Pierceites and its new species P. schizocystis, and the new combination P. ( = Trithyrodinium) pentagonum (May) are proposed. Diacanthum hollisteri Habib, type species of Diacanthum, is emended to accommodat e cysts with the archeopyle formulas P3'', 2P2''-3'', 2P3''-4'', and 3P2''-3''-4''.
Resumo:
Early diagenetic dolomite beds were sampled during the Ocean Drilling Programme (ODP) Leg 201 at four reoccupied ODP Leg 112 sites on the Peru continental margin (Sites 1227/684, 1228/680, 1229/681 and 1230/685) and analysed for petrography, mineralogy, d13C, d18O and 87Sr/86Sr values. The results are compared with the chemistry, and d13C and 87Sr/86Sr values of the associated porewater. Petrographic relationships indicate that dolomite forms as a primary precipitate in porous diatom ooze and siliciclastic sediment and is not replacing the small amounts of precursor carbonate. Dolomite precipitation often pre-dates the formation of framboidal pyrite. Most dolomite layers show 87Sr/86Sr-ratios similar to the composition of Quaternary seawater and do not indicate a contribution from the hypersaline brine, which is present at a greater burial depth. Also, the d13C values of the dolomite are not in equilibrium with the d13C values of the dissolved inorganic carbon in the associated modern porewater. Both petrography and 87Sr/86Sr ratios suggest a shallow depth of dolomite formation in the uppermost sediment (<30 m below the seafloor). A significant depletion in the dissolved Mg and Ca in the porewater constrains the present site of dolomite precipitation, which co-occurs with a sharp increase in alkalinity and microbial cell concentration at the sulphate-methane interface. It has been hypothesized that microbial 'hot-spots', such as the sulphate-methane interface, may act as focused sites of dolomite precipitation. Varying d13C values from -15 per mil to +15 per mil for the dolomite are consistent with precipitation at a dynamic sulphate-methane interface, where d13C of the dissolved inorganic carbon would likewise be variable. A dynamic deep biosphere with upward and downward migration of the sulphate-methane interface can be simulated using a simple numerical diffusion model for sulphate concentration in a sedimentary sequence with variable input of organic matter. Thus, the study of dolomite layers in ancient organic carbon-rich sedimentary sequences can provide a useful window into the palaeo-dynamics of the deep biosphere.
Resumo:
Miocene to Quaternary sediments from the Oki Ridge (Site 798) and the Kita-Yamato Trough (Site 799) in the Japan Sea contain organic carbon ranging from about 0.6% in light-colored layers to almost 6% in dark layers. The organic matter consists of a variable mixture of marine and terrigenous contributions, the ratio of which is not correlated to the total organic carbon content. Marine organic particles clearly dominate in the deeper section of Hole 799B. The extractable bitumen is strongly dominated by long-chain alkenones from microalgae in the shallower sediments, whereas bishomohopanoic acid (C32) of eubacterial origin is the single most abundant compound in deeper samples. Normal alkanes and straight-chain carboxylic acids, both of which show a bimodal distribution with odd and even carbon-number predominance, respectively, are two other groups of compounds which are important constituents of the extracts. The deepest samples at Site 799 contain a considerable amount of short-chain components, which probably migrated upward from thermally more altered deeper sediments.
Resumo:
Late Holocene laminated sediments from a core transect centred in the oxygen minimum zone (OMZ) impinging at the continental slope off Pakistan indicate stable oxygen minimum conditions for the past 7000 calendar years. High SW-monsoon-controlled biological productivity and enhanced organic matter preservation during this period is reflected in high contents of total organic carbon (TOC) and redox-sensitive elements (Ni, V), as well as by a low-diversity, high-abundance benthic foraminiferal Buliminacea association and high abundance of the planktonic species Globigerina bulloides indicative of upwelling conditions. Surface-water productivity was strongest during SW monsoon maxima. Stable OMZ conditions (reflected by laminated sediments) were found also during warm interstadial events (Preboreal, Bølling-Allerød, and Dansgaard-Oeschger events), as well as during peak glacial times (17-22.5 ka, all ages in calendar years). Sediment mass accumulation rates were at a maximum during the Preboreal and Younger Dryas periods due to strong riverine input and mobilisation of fine-grained sediment coinciding with rapid deglacial sea-level rise, whereas eolian input generally decreased from glacial to interglacial times. In contrast, the occurrence of bioturbated intervals from 7 to 10.5 ka (early Holocene), in the Younger Dryas (11.7-13 ka), from 15 to 17 ka (Heinrich event 1) and from 22.5 to 25 ka (Heinrich event 2) suggests completely different conditions of oxygen-rich bottom waters, extremely low mass and organic carbon accumulation rates, a high-diversity benthic fauna, all indicating lowered surface-water productivity. During these intervals the OMZ was very poorly developed or absent and a sharp fall of the aragonite compensation depth favoured the preservation of pteropods. The abundance of lithogenic proxies suggests aridity and wind transport by northwesterly or northeasterly winds during these periods coinciding with the North Atlantic Heinrich events and dust peaks in the Tibetan Loess records. The correlation of the monsoon-driven OMZ variability in the Arabian Sea with the rapid climatic fluctuations in the high northern latitudes suggests a close coupling between the climates of the high and low latitudes at a global scale.
Resumo:
Data on distribution of dissolved and particulate organic matter obtained during Cruises 21 and 24 of R/V Akademik A. Nesmeyanov in June-August 1992 and 1993 are presented. In general a remarkable heterogeneity in distributions of both dissolved and particulate organic carbon is revealed. Concentrations of dissolved organic carbon vary from 98 to 700 µmol/l and those of particulate organic carbon vary from 3 to 50 µmol/l. Maximum concentrations are commonly observed in the shelf region while minimum concentrations - in the central basin. Run-off of the Amur River raises dissolved matter concentration in the Sakhalin Bay, while oil exploitation at the Sakhalin shelf maximizes particulate organic carbon concentration and minimizes dissolved one. Concentrations of dissolved and particulate organic carbon in the surface microlayer were estimated for the first time and are shown to be 1.5-2.0 times higher than in surface waters.
Resumo:
The sediments from the Gulf of California are potentially good sources for oil and gas. They are rich in organic carbon (av. = 1.9%). Sediments from the margins of the Gulf are rich in oil-prone marine-amorphous organic matter. Sediments from Guaymas Basin contain the same material plus abundant subordinate amounts of gas-prone terrestrially derived organic matter. The enrichment of all of these sediments in marine-amorphous components reflects deposition in a highly productive and oxygen-poor water mass. The sediments are thermally immature, except for those altered by hydrothermal activity or by the intrusion of sills. These sediments are extensively cooked and may have lost their potential for hydrocarbon generation.
Resumo:
Fifteen sediment samples were studied from five drill sites recovered by the Glomar Challenger on Legs I and IV in the Gulf of Mexico and western Atlantic. This study concentrated on compounds derived from biogenic precursors, namely: (1) hydrocarbons, (2) fatty acids, (3) pigments and (4) amino acids. Carbon isotope (dC13) data [values <(-26)?, relative to PDB], long-chain n-alkyl hydrocarbons (>>C27) with odd carbon numbered molecules dominating even carbon numbered species, and presence of perylene proved useful as possible indicators for terrigenous contributions to the organic matter in some samples. Apparently land-derived organic matter can be transported for distances over 1000 km into the ocean and their source still recognized. The study was primarily designed to investigate: (i) the sources of the organic matter present in the sediment, (ii) their stability with time of accumulation and (iii) the conditions necessary for in situ formation of new compounds.
Resumo:
This study focuses on the analysis of lake sediments retrieved from the deepest part of Lake Nam Co (Tibetan Plateau). One gravity core of 115 cm length, covering the last ~ 4000 cal BP, was analyzed for geochemical and biological parameters. High organic content at ~ 4000 cal BP and the coinciding presence of pyrite framboids until ~ 2000 cal BP point to hampered decomposition of organic material due to anoxic conditions within the lake sediments. At the same time sedimentological and biological proxies suggest a rather high lake level, but still ~ 5 m below the recent one, with less saline lake water due to enhanced monsoonal activity. During this time a change in the source of organic matter to lowered input of terrestrial components is observed. A rather quick shift to a dry environment with less monsoonal influence and a lake level ~ 15 m lower than today at ~ 2000 cal BP lead to the oxygenation of sediment, the degradation of organic matter and the absence of pyrite. Oscillations of the lake level thereafter were of minor amplitude and not able to establish anoxia at the lake bottom again. A wet spell between ~ 1500 cal BP and ~ 1150 cal BP is visible in proxies referring to catchment hydrology and the ostracod-based water depth transfer function gives only a slightly elevated lake level. The last ~ 300 years are characterized by low TOC and rising TN values reflecting enhanced nutrient supply and hence an advancing influence of human activity in the catchment. Decreasing TOC/TN values point to a complete shift to almost solely aquatic biomass production. These results show that hydrological variations in terms of lake level change based on monsoonal strength can be linked to redox conditions at the lake bottom of Nam Co. Comparison with other archives over larger parts of the Tibetan Plateau and beyond exhibits a rather homogeneous climatic pattern throughout the late Holocene.
Resumo:
Five-hundred ten meters of Cretaceous sediments were drilled north of the Walvis escarpment in Hole 530A during Leg 75. An immature stage of evolution for organic matter can be assigned to all the samples studied. Black shales are interbedded with red and green claystone in the bottom sedimentary unit, Unit 8, which is of Coniacian to late Albian age. The richest organic carbon contents and petroleum potentials occur in the black shales. Detrital organic matter is present throughout the various members of a sequence, mixed with largely oxidized organic matter in the gray and green claystone or marlstone members on both sides. Detrital organic matter also characterizes the black streaks observed in the claystones. Vertical discontinuities in organic matter distribution are assigned to slumping. Several types of black shales can be identified, according to their content of detrital organic matter, the more detrital black levels corresponding to the Albian-Cenomanian period. Cyclic variations of organic matter observed for a sequence can occur for a set of sequences and even for some consecutive sets of sequences. Climatic factors are proposed to account for the cyclic sedimentation and distribution of organic matter for every sequence that includes a black bed.