418 resultados para elliptical core non-hexagonal symmetry
Resumo:
Permafrost degradation influences the morphology, biogeochemical cycling and hydrology of Arctic landscapes over a range of time scales. To reconstruct temporal patterns of early to late Holocene permafrost and thermokarst dynamics, site-specific palaeo-records are needed. Here we present a multi-proxy study of a 350-cm-long permafrost core from a drained lake basin on the northern Seward Peninsula, Alaska, revealing Lateglacial to Holocene thermokarst lake dynamics in a central location of Beringia. Use of radiocarbon dating, micropalaeontology (ostracods and testaceans), sedimentology (grain-size analyses, magnetic susceptibility, tephra analyses), geochemistry (total nitrogen and carbon, total organic carbon, d13Corg) and stable water isotopes (d18O, dD, d excess) of ground ice allowed the reconstruction of several distinct thermokarst lake phases. These include a pre-lacustrine environment at the base of the core characterized by the Devil Mountain Maar tephra (22 800±280 cal. a BP, Unit A), which has vertically subsided in places due to subsequent development of a deep thermokarst lake that initiated around 11 800 cal. a BP (Unit B). At about 9000 cal. a BP this lake transitioned from a stable depositional environment to a very dynamic lake system (Unit C) characterized by fluctuating lake levels, potentially intermediate wetland development, and expansion and erosion of shore deposits. Complete drainage of this lake occurred at 1060 cal. a BP, including post-drainage sediment freezing from the top down to 154 cm and gradual accumulation of terrestrial peat (Unit D), as well as uniform upward talik refreezing. This core-based reconstruction of multiple thermokarst lake generations since 11 800 cal. a BP improves our understanding of the temporal scales of thermokarst lake development from initiation to drainage, demonstrates complex landscape evolution in the ice-rich permafrost regions of Central Beringia during the Lateglacial and Holocene, and enhances our understanding of biogeochemical cycles in thermokarst-affected regions of the Arctic.
Resumo:
Aeolian and fluvial sediment transport to the Atlantic Ocean offshore Mauritania were reconstructed based on grain-size distributions of the carbonate-free silt fraction of three marine sediment records of Cap Timiris Canyon to monitor the climatic evolution of present-day arid north-western Africa. During the late Pleistocene, predominantly coarse-grained particles, which are interpreted as windborne dust, characterise glacial dry climate conditions with a low sea level and extended sand seas that reach onto the exposed continental shelf off Mauritania. Subsequent particle fining and the abrupt decrease in terrigenous supply are attributed to humid climate conditions and dune stabilisation on the adjacent African continent with the onset of the Holocene humid period. Indications for an ancient drainage system, which was discharging fluvial mud offshore via Cap Timiris Canyon, are provided by the finest end member for early to mid Holocene times. However, in comparison to the Senegal and Niger River further south, the river system connecting Cap Timiris Canyon with the Mauritanian hinterland was starved during the late Holocene and is non-discharging under present-day arid climate conditions.
Resumo:
The ratio between the clay minerals kaolinite and chlorite has been investigated in high resolution in a late Quaternary sediment core from the central Aegean Sea. The record spans the last ca. 105 ka. The kaolinite/chlorite ratio was used to reconstruct the fine-grained aeolian dust influx from the North African deserts, mainly derived from desiccated lake depressions. It therewith can be used as a proxy for wind activity, aridity and vegetation cover in the source area. The data document three major humid phases in North Africa bracketing the formation of sapropel layers S4, S3 and S1. They occur at >105-95 ka, 83.5-72 ka and 14-2 ka. The first two phases are characterised by relatively abrupt lower and upper boundaries suggesting a non-linear response of vegetation to precipitation, with critical hydrological thresholds. In contrast, the onset and termination of the last humid period were more gradual. Highest kaolinite/chlorite ratios indicating strongest aeolian transport and aridity occur during Marine Isotope Stage (MIS) 5b, at ca. 95-84 ka. The long-term decrease in kaolinite/chlorite ratios during the last glacial period indicates a gradual decline of deflatable lake sediments in the source areas.
Resumo:
Rising stable nitrogen isotope ratios (d15N) in dated sediment records of the German Bight/SE North Sea track river-induced coastal eutrophication over the last 2 centuries. Fully exploiting their potential for reconstructions of pristine conditions and quantitative analysis of historical changes in the nitrogen cycle from these sediment records requires knowledge on processes that alter the isotopic signal in non-living organic matter (OM) of sinking particles and sediments. In this study, we analyze the isotopic composition of particulate nitrogen (PN) in the water column during different seasons, in surface sediments, and in sediment cores to assess diagenetic influences on the isotopic composition of OM. Amino acid (AA) compositions of suspended matter, surface sediments, and dated cores at selected sites of the German Bight serve as indicators for quality and degradation state of PN. The d15N of PN in suspended matter had seasonal variances caused by two main nitrate sources (oceanic and river) and different stages of nitrate availability during phytoplankton assimilation. Elevated d15N values (> 20 per mil) in suspended matter near river mouths and the coast coincide with a coastal water mass receiving nitrate with elevated isotope signal (d15N > 10 per mil) derived from anthropogenic input. Particulate nitrogen at offshore sites fed by oceanic nitrate having a d15N between 5 and 6 per mil had low d15N values (< 2 per mil), indicative of an incipient phytoplankton bloom. Surface sediments along an offshore-onshore transect also reflect the gradient of low d15N of nitrate in offshore sites to high values near river mouths, but the range of values is smaller than between the end members listed above and integrates the annual d15N of detritus. Sediment cores from the coastal sector of the gradient show an increasing d15N trend (increase of 2.5 per mil) over the last 150 years. This is not related to any change in AA composition and thus reflects eutrophication. The d15N signals from before AD 1860 represent a good estimation of pre-industrial isotopic compositions with minimal diagenetic overprinting. Rising d13C in step with rising d15N in these cores is best explained by increasing productivity caused by eutrophication.
Resumo:
40Ar/39Ar analyses of tephra and clasts of volcanic rock provide age constraints for upper parts of the CRP-2A core. Single-crystal laser-fusion analyses of anorthoclase phenocrysts from three tephra-bearing layers yielded the most precise age constraints for CRP-2A. The dated tephra layers are: 1) a 2.7-m-thick interval of pumice and ash layers between 111.5 and 114.2 meters below sea floor (mbsf) (weighted mean age = 21.44 ± 0.05 Ma, +2.2); 2) a concentration of pumice near 193.4 mbsf (23.98 ± 0.13 Ma): and 3) a concentration of pumice near 280 mbsf (24,22 ± 0.03 Ma) (all ages are calibrated relative to Fish Canyon Tuff sanidine at 27.84 Ma). The 111 to 114 mbsf tephra is almost entirely non-reworked, and the 193 mbsf and 280 mbsf tephra concentrations are interpreted as being reworked and redeposited soon after eruption. All three of the tephra ages are therefore considered to be equivalent to depositional ages. The variation in precision of these three age determinations is largely a function of phenocryst size and abundance. The accuracy of these ages is equal to the accuracy of the current calibration of the 40Ar/39Ar methode (about ± 1 %). 40Ar/39Ar results from volcanic clasts provide three additional maximum age constraints for the CRP-2A core. Single-crystal laser-fusion of sanidine phenocrysts from a rhyolitic clast from 294 mbsf yielded a precise maximum depositional age of 24.98 ± 0.08 Ma, and plateau ages of groundmass concentrates from basaltic clasts near 36.02 mbsf and 125.92 mbsf yielded maximum depositional ages of 19.18 ± 0.12 Ma, and 22.56 ± 0.14 Ma, respectively. The 40Ar/39Ar data, in association with biostratigraphic, paleomagnetic, and isotopic age constraints for CRP-2A, confirm interpretation for rapid sedimentation rates in the 36 to 280 mbsf interval, particularly in the 193 to 280 mbsf interval where they support interpretations for sedimentation cycles spanning 100 k.y. intervals. In addition to the 19 to 25 Ma ages measured from thephra layers and clasts, provenance-related ages ranging from 150 to 450 Ma were determined from clasts and individual detrital or xenocrystic crystals from CRP-2A.
Resumo:
During the 1996 Programma Nazionale di Ricerche in Antartide-International Trans-Antarctic Scientific Expedition traverse, two firn cores were retrieved from the Talos Dome area (East Antarctica) at elevations of 2316 m (TD, 89 m long) and 2246 m (ST556, 19 m long). Cores were dated by using seasonal variations in non-sea-salt (nss) SO42- concentrations coupled with the recognition of tritium marker level (1965-1966) and nss SO42- spikes due to the most important volcanic events in the past (Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Kuwae 1452, Unknown 1259). The number of annual layers recognized in the TD and ST556 cores was 779 and 97, respectively. The dD record obtained from the TD core has been compared with other East Antarctic isotope ice core records (Dome C EPICA, South Pole, Taylor Dome). These records suggest cooler climate conditions between the middle of 16th and the beginning of 19th centuries, which might be related to the Little Ice Age (LIA) cold period. Because of the high degree of geographical variability, the strongest LIA cooling was not temporally synchronous over East Antarctica, and the analyzed records do not provide a coherent picture for East Antarctica. The accumulation rate record presented for the TD core shows a decrease during part of the LIA followed by an increment of about 11% in accumulation during the 20th century. At the ST556 site, the accumulation rate observed during the 20th century was quite stable.