884 resultados para Sea ice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ice shelves strongly impact coastal Antarctic sea-ice and the associated ecosystem through the formation of a sub-sea-ice platelet layer. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In this study, we applied a laterally-constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the landfast sea ice of Atka Bay, eastern Weddell Sea, in 2012. In addition to consistent fast-ice thickness and -conductivities along > 100 km transects; we present the first comprehensive, high resolution platelet-layer thickness and -conductivity dataset recorded on Antarctic sea ice. The reliability of the algorithm was confirmed by using synthetic data, and the inverted platelet-layer thicknesses agreed within the data uncertainty to drill-hole measurements. Ice-volume fractions were calculated from platelet-layer conductivities, revealing that an older and thicker platelet layer is denser and more compacted than a loosely attached, young platelet layer. The overall platelet-layer volume below Atka Bay fast ice suggests that the contribution of ocean/ice-shelf interaction to sea-ice volume in this region is even higher than previously thought. This study also implies that multi-frequency EM induction sounding is an effective approach in determining platelet layer volume on a larger scale than previously feasible. When applied to airborne multi-frequency EM, this method could provide a step towards an Antarctic-wide quantification of ocean/ice-shelf interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While summer Arctic sea-ice extent has decreased over the past three decades, it is subject to large interannual and regional variations. Methodological challenges in measuring ice thickness continue to hamper our understanding of the response of the ice-thickness distribution to recent change, limiting the ability to forecast sea-ice change over the next decade. We present results from a 2400 km long pan-Arctic airborne electromagnetic (EM) ice thickness survey in April 2009, the first-ever large-scale EM thickness dataset obtained by fixed-wing aircraft over key regions of old ice in the Arctic Ocean between Svalbard and Alaska. The data provide detailed insight into ice thickness distributions characteristic for the different regions. Comparison with previous EM surveys shows that modal thicknesses of old ice had changed little since 2007, and remained within the expected range of natural variability.