426 resultados para Global change drivers


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eastern Mediterranean is a hotspot of biological invasions. Numerous species of Indo-pacific origin have colonized the Mediterranean in recent times, including tropical symbiont-bearing foraminifera. Among these is the species Pararotalia calcariformata. Unlike other invasive foraminifera, this species has been discovered only two decades ago and is restricted to the eastern Mediterranean coast. Combining ecological, genetic and physiological observations, we attempt to explain the recent invasion of this species in the Mediterranean Sea. Using morphological and genetic data, we confirm the species attribution to P. calcariformata McCulloch 1977 and identify its symbionts as a consortium of diatom species dominated by Minutocellus polymorphus. We document photosynthetic activity of its endosymbionts using Pulse Amplitude Modulated Fluorometry and test the effects of elevated temperatures on growth rates of asexual offspring. The culturing of asexual offspring for 120 days shows a 30-day period of rapid growth followed by a period of slower growth. A subsequent 48-day temperature sensitivity experiment indicates a similar developmental pathway and high growth rate at 28°C, whereas an almost complete inhibition of growth was observed at 20°C and 35°C. This indicates that the offspring of this species may have lower tolerance to cold temperatures than what would be expected for species native to the Mediterranean. We expand this hypothesis by applying a Species Distribution Model (SDM) based on modern occurrences in the Mediterranean using three environmental variables: irradiance, turbidity and yearly minimum temperature. The model reproduces the observed restricted distribution and indicates that the range of the species will drastically expand westwards under future global change scenarios. We conclude that P. calcariformata established a population in the Levant because of the recent warming in the region. In line with observations from other groups of organisms, our results indicate that continued warming of the eastern Mediterranean will facilitate the invasion of more tropical marine taxa into the Mediterranean, disturbing local biodiversity and ecosystem structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming (Graversen et al., 2008, doi:10.1038/nature06502) and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized (Kitchell and Clark, 1982, doi:10.1016/0031-0182(82)90087-6). Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre (Dore et al., 2008, doi:10.1016/j.pocean.2007.10.002), or those indicated for the Mediterranean sapropels (Kemp et al., 1999, doi:10.1038/18001). With increased CO2 levels and warming currently driving increased stratification in the global ocean (Sarmiento et al., 1998, doi:10.1038/30455), this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean (Falcon-Lang et al., 2004, doi:10.1016/j.palaeo.2004.05.016; Amiot et al., 2004, doi:10.1016/j.epsl.2004.07.015; Otto-Bliesner et al., 2002, doi:10.1029/2001JD000821), rather than recent suggestions of a 15 °C mean annual temperature at this time (Jenkyns et al., 2004, doi:10.1038/nature03143).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surface water hydrography along the western Iberian margin, as part of the North Atlantic's eastern boundary upwelling system, consists of a complex, seasonally variable system of equatorward and poleward surface and subsurface currents and seasonal upwelling. Not much information exists to ascertain if the modern current and productivity patterns subsisted under glacial climate conditions, such as during marine isotope stage (MIS) 2, and how North Atlantic meltwater events, especially Heinrich events, affected them. To help answer these questions we are combining stable isotope records of surface to subsurface dwelling planktonic foraminifer species with sea surface temperature and export productivity data for four cores distributed along the western and southwestern Iberian margin (MD95-2040, MD95-2041, MD99-2336, and MD99-2339). The records reveals that with the exception of the Heinrich events and Greenland Stadial (GS) 4 hydrographic conditions along the western Iberian margin were not much different from the present. During the Last Glacial Maximum (LGM), subtropical surface and subsurface waters penetrated poleward to at least 40.6°N (site MD95-2040). Export productivity was, in general, high on the western margin during the LGM and low in the central Gulf of Cadiz, in agreement with the modern situation. During the Heinrich events and GS 4, on the other hand, productivity was high in the Gulf of Cadiz and suppressed in the upwelling regions along the western margin where a strong halocline inhibited upwelling. Heinrich event 1 had the strongest impact on the hydrography and productivity off Iberia and was the only period when subarctic surface waters were recorded in the central Gulf of Cadiz. South of Lisbon (39°N), the impact of the other Heinrich events was diminished, and not all of them led to a significant cooling in the surface waters. Thus, climatic impacts of Heinrich events highly varied with latitude and the prevailing hydrographic conditions in this region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global change in land water storage and its effect on sea level is estimated over a 7-year time span (August 2002 to July 2009) using space gravimetry data from GRACE. The 33 World largest river basins are considered. We focus on the year-to-year variability and construct a total land water storage time series that we further express in equivalent sea level time series. The short-term trend in total water storage adjusted over this 7-year time span is positive and amounts to 80.6 ± 15.7 km**3/yr (net water storage excess). Most of the positive contribution arises from the Amazon and Siberian basins (Lena and Yenisei), followed by the Zambezi, Orinoco and Ob basins. The largest negative contributions (water deficit) come from the Mississippi, Ganges, Brahmaputra, Aral, Euphrates, Indus and Parana. Expressed in terms of equivalent sea level, total water volume change over 2002-2009 leads to a small negative contribution to sea level of -0.22 ± 0.05 mm/yr. The time series for each basin clearly show that year-to-year variability dominates so that the value estimated in this study cannot be considered as representative of a long-term trend. We also compare the interannual variability of total land water storage (removing the mean trend over the studied time span) with interannual variability in sea level (corrected for thermal expansion). A correlation of ~0.6 is found. Phasing, in particular, is correct. Thus, at least part of the interannual variability of the global mean sea level can be attributed to land water storage fluctuations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 µatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Continuous sedimentary records from an eastern Mediterranean cold-water coral ecosystem thriving in intermediate water depths (~600 m) reveal a temporary extinction of cold-water corals during the Early to Mid Holocene from 11.4-5.9 cal kyr BP. Benthic foraminiferal assemblage analysis shows low-oxygen conditions of 2 ml l**-1 during the same period, compared to bottom-water oxygen values of 4-5 ml l**-1 before and after the coral-free interval. The timing of the corals' demise coincides with the sapropel S1 event, during which the deep eastern Mediterranean basin turned anoxic. Our results show that during the sapropel S1 event low oxygen conditions extended to the rather shallow depths of our study site in the Ionian Sea and caused the cold-water corals temporary extinction. This first evidence for the sensitivity of cold-water corals to low oceanic oxygen contents suggests that the projected expansion of tropical oxygen minimum zones resulting from global change will threaten cold-water coral ecosystems in low latitudes in the same way that ocean acidification will do in the higher latitudes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification is expected to lower the net accretion of coral reefs yet little is known about its effect on coral photophysiology. This study investigated the effect of increasing CO2 on photosynthetic capacity and photoprotection in Acropora formosa. The photoprotective role of photorespiration within dinoflagellates (genus Symbiodinium) has largely been overlooked due to focus on the presence of a carbon-concentrating mechanism despite the evolutionary persistence of a Form II Rubisco. The photorespiratory fixation of oxygen produces phosphoglycolate that would otherwise inhibit carbon fixation though the Calvin cycle if it were not converted to glycolate by phosphoglycolate phosphatase (PGPase). Glycolate is then either excreted or dealt with by enzymes in the photorespiratory glycolate and/or glycerate pathways adding to the pool of carbon fixed in photosynthesis. We found that CO2 enrichment led to enhanced photoacclimation (increased chlorophyll a per cell) to the subsaturating light levels. Light-enhanced dark respiration per cell and xanthophyll de-epoxidation increased, with resultant decreases in photosynthetic capacity (Pnmax) per chlorophyll. The conservative CO2 emission scenario (A1B; 600-790 ppm) led to a 38% increase in the Pnmax per cell whereas the 'business-as-usual' scenario (A1F1; 1160-1500 ppm) led to a 45% reduction in PGPase expression and no change in Pnmax per cell. These findings support an important functional role for PGPase in dinoflagellates that is potentially compromised under CO2 enrichment.