818 resultados para Basalt.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineralogical and geochemical analyses of alteration products from upper and lower volcanic series recovered during ODP Leg 104 reveal variations both in composition and order of crystallization of clay minerals vesicles and voids filling and replacing glass. These results provide information about successive alteration stages of rocks and interlayered volcaniclastic sediments. The first stage, related to initial basalt-seawater interaction, is characterized by development of Fe-smectites, especially Fe-rich saponite. A second stage of intermittently superimposed subaerial weathering is marked by iron-oxides-halloysite-kaolinite formation. The third episode, interpreted as hydrothermal on the basis of O-isotopic data, is defined by postburial coprecipitation of Fe-poor, Mg-rich saponite and celadonite. A distinct final and pervasive hydrothermal stage, occurring mainly in the lower series and dominated by Al-smectites-zeolites assemblage, indicates changes toward a more reducing alteration environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strontium isotope ratios of authigenic carbonates from Indian Ocean sea-floor basalts have been used to determine the timing of carbonate mineral precipitation and fluid flow. The samples include calcites from 57.2 Ma crust from Ocean Drilling Project (ODP) Site 715, and calcites, aragonites, and siderites from 63.7 Ma crust from ODP Site 707. At Site 715, calcite precipitation may have begun at any time after the basalts cooled, and it continued until approximately 31 Ma, or 26 m.y. after basalt eruption. At Site 707, aragonite and siderite did not begin to precipitate until about 36 Ma, almost 30 m.y. after basalt eruption, and continued to precipitate until at least 30 and 28 Ma, respectively. Calcite precipitation began at approximately 32 Ma and continued until 22 Ma. These ages suggest that vein mineral deposition and low-temperature fluid circulation in the ocean crust may continue for much longer periods of time than previously observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epiclastic volcanogenic rocks recovered from the Kerguelen Plateau during Ocean Drilling Program Legs 119 and 120 comprise (pre-)Cenomanian(?) claystones (52 m thick, Site 750); a Turonian(?) basaltic pebble conglomerate (1.2 m thick, Site 748; Danian mass flows (45 m thick, Site 747); and volcanogenic debris flows of Quaternary age at Site 736 (clastic apron of Kerguelen Island). Pyroclastic rocks comprise numerous Oligocene to Quaternary marine ash layers. The epiclastic sediments with transitional mid-ocean-ridge basalt (T-MORB) origin indicate weathering (Site 750) and erosion (Site 747) of Early Cretaceous T-MORB from a then-emergent Kerguelen Plateau, connected to Late Cretaceous tectonic events. The basal pebble conglomerate of Site 748 has an oceanic-island basalt (OIB) composition and denotes erosion and reworking of seamount to oceanic-island-type volcanic sources. The vitric- to crystal-rich marine ash layers are a few centimeters thick, have rather uniform grain sizes around 60 ± 40 µm, and are a result of Plinian eruptions. Crystal-poor silicic vitric ashes may also represent co-ignimbrite ashes. The ash layers have bimodal, basaltic, and silicic compositions with a few intermediate shards. The basaltic ashes are evolved high-titanium T-MORB; a few grains in a silicic pumice lapilli layer have a low-titanium basaltic composition. The silicic ashes comprise trachytic and rhyolitic glass shards belonging to a high-K series, except for a few low-K glasses admixed to a basaltic ash layer. Feldspar and clinopyroxene compositions fit the glass chemistry: high-Ti tholeiite-basaltic glasses have Plagioclase of An40-80 and pigeonite to augite clinopyroxene compositions. Silicic ashes have K-rich anorthoclase and minor Plagioclase around An20 and ferriaugitic to hedenbergitic clinopyroxene compositions. The line of magmatic evolution for the glass shards is not compatible with simple two-end member (high-Ti T-MORB and high-K rhyolite) mixing, but favors successive Ca-Mg-Fe pyroxene, Ti magnetite, and apatite fractionation, and K-rich alkali feldspar fractionation in trachytic magmas to yield rhyolitic compositions. Plagioclase fractionation occurs throughout. This qualitative model is in basic accordance with the observed mineral assemblage. However, as the time span for explosive volcanism spans >30 m.y., this basic model cannot comply with fractional crystallization in a single magma reservoir. The ash layers resulted from highly explosive eruptions on Kerguelen and, with less probability, Heard islands since the Oligocene. The explosive history starts with widespread Oligocene basaltic ash layers that indicate sea-level or subaerial volcanism on the Northern Kerguelen Plateau. After a hiatus of 24 m.y.(?), explosive magmatic activity was vigorously renewed in the late Miocene with more silicic eruptions. A peak in explosive activity is inferred for the Pliocene-Pleistocene. The composition and evolution of Kerguelen Plateau ash layers resemble those from other hotspot-induced, oceanic-island realms such as Iceland and Jan Mayen in the North Atlantic, and the Canary Islands archipelago in the Central Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sulfur contents of 21 basalt samples from four DSDP Leg 82 holes were determined and the isotopic compositions of sulfur were measured on 15 of them. Most of the basalts are altered and have sulfur contents of about 100 ppm. Isotopic ratios for sulfate and total sulfur range from +0.7 to +10.5 per mil, indicating almost complete leaching of the igneous sulfide in low-sulfur samples by alteration. Total sulfur content of some samples ranges between 960 and 1170 ppm, somewhat higher than expected for tholeiitic basalts. The isotope ratios of total sulfur in these samples are slightly shifted to values heavier than the generally assumed mantle ratio of zero, and this shift is thought to result from a secondary source of sulfur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major and trace element (including REE) geochemistry of basalts and chilled basaltic glasses from the MAR axial zone in the vicinity of the Sierra Leone FZ (5-7°10'N) has been studied. Associations of basalts of various compositions with particular ocean-floor geological structural features have been analyzed as well. Three basaltic varieties have been discriminated. Almost ubiquitous are high-Mg basalts (Variety 1) that are derivatives of N-MORB tholeiitic melts and that are produced in the axial zone of spreading. Variety 2 is alkaline basalts widespread on the southwestern flank of the MAR crest zone in the Sierra Leone region, likely generated through deep mantle melting under plume impact. Variety 3 is basalts derivative from T- and P-MORB-like tholeiitic melts and originating through addition of deeper mantle material to depleted upper mantle melts. Magma generation parameters, as calculated from chilled glass compositions, are different for depleted tholeiites (44-55 km, 1320-1370°C) and enriched tholeiites (45-78 km, 1330-1450°C). Mantle plume impact is shown to affect not only tholeiitic basalt compositions but also magma generation conditions in the axial spreading zone, resulting in higher Ti and Na concentrations in melts parental to rift-related basalts occurring near the plume. T- and P-MORBs are also developed near areas where mantle plumes are localized. High-Mg basalts are shown to come in several types with distinctive Ti and Na contents. Nearly every single MAR segment (bounded by sinistral strike slips and the Bogdanov Fracture Zone) is featured by its own basalt type suggesting that it has formed above an asthenospheric diapir with its unique magma generation conditions. These conditions are time variable. Likely causes of temporal and spatial instability of the mantle upwelling beneath this portion of the MAR are singular tectonic processes and plume activity. In sulfide-bearing rift morphostructures (so-called "Ore area'' and the Markov Basin), basalts make up highly evolved suites generated through olivine and plagioclase fractionation, which is suggestive of relatively long-lived magma chambers beneath the sulfide-bearing rift morphostructures. Functioning of these chambers is a combined effect of singular geodynamic regime and plume activity. In these chambers melts undergo deep differentiation leading to progressively increasing concentration of sulfide phase, eventually to be supplied to the hydrothermal plumbing system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The powerful eruption in the Akademii Nauk caldera on January 2, 1996 marked a new activity phase of the Karymsky volcano and became a noticeable event in the history of modern volcanism in Kamchatka. The paper reports data obtained by studying more than 200 glassy melt inclusions in phenocrysts of olivine (Fo82-72), plagioclase (An92-73), and clinopyroxene (Mg# 83-70) in basalts of the 1996 eruption. The data were used to estimate composition of the parental melt and physicochemical parameters of the magma evolution. According to our data, the parental melt corresponded to low magnesium, high aluminum basalt (SiO2 = 50.2%, MgO = 5.6%, Al2O3 = 17%) of the mildly potassium type (K2O = 0.56%) and contained much dissolved volatile components (H2O = 2.8%, S = 0.17%, and Cl = 0.11%). Melt inclusions in the minerals are similar in chemical composition, a fact testifying that the minerals crystallized simultaneously with one another. Their crystallization started at pressure ~1.5 kbar, proceeded within a narrow temperature range of 1040+/-20°C, and continued until near-surface pressure ~100 bar was reached. Degree of crystallization of the parental melt during its eruption was close to 55%. Massive crystallization was triggered by H2O degassing under pressure <1 kbar. Magma degassing in an open system resulted in escape of 82% H2O, 93% S, and 24% Cl (of their initial contents in the parental melt) to the fluid phase. Release of volatile compounds to the atmosphere during the eruption that lasted for 18 h was estimated as 1.7x10**6 t H2O, 1.4x10**5 t S, and 1.5x10**4 t Cl. Concentrations of most incompatible trace elements in the melt inclusions are close to those in the rocks and to the expected fractional differentiation trend. Melt inclusions in plagioclase were found to be selectively enriched in Li. The Li-enriched plagioclase with melt inclusions thought to originate from cumulate layers in the feeding system beneath Karymsky volcano, in which plagioclase interacted with Li-rich melts/brines and was subsequently entrapped and entrained by the magma during the 1996 eruption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palynological studies of the intrabasaltic sediment layers in the lower volcanic series from ODP Leg 104 outer Voring Plateau Hole 642E Cores 102 through 109 indicated abundant pollen and rarer dinoflagellate cysts. The dinoflagellates belong to the Apectodinium hyperacanthum Zone and indicate an age equivalent to nannoplankton Zones NP9-lower NP10 around the Paleocene/Eocene boundary. The pollen and spore assemblage found here in 12 of the samples from the lower volcanic series is of well- preserved and distinctive specimens and contains unusual forms of pollen from the Taxodiaceae and the Hamamelidae. It has not been transported far from vegetation that was dominated by conifer forest with some ferns and deciduous arborescent angiosperms. Nearly identical assemblages are found elsewhere in the Brito-Arctic Igneous Province, in intrabasaltic sediments from eastern Greenland, the Faeroe Islands, the Isle of Mull, and Antrim (Northern Ireland), and above basalt at the Rockall Plateau. The assemblage is also present in sediments around the Paleocene/Eocene boundary in Spitsbergen. This pollen and spore flora is also associated with dinoflagellate cysts of the Apectodinium hyperacanthum Zone in the deposits from eastern Greenland, the Rockall Plateau, and Spitsbergen, suggesting that these are correlative. Assemblages of the same age from the North Sea, Denmark, and the London and Paris Basins are different. Paleobotanical evidence suggests a short survival of the intrabasaltic flora, and that all the deposits considered here are of about the same age. We propose that at around the Paleocene/Eocene boundary a distinct flora, named here as the Brito-Arctic Igneous Province (BIP) flora, occurred on the line of volcanicity stretching from Rockall to the Greenland Sea, and even to Spitsbergen. Geophysical evidence supports our view that the Rockall to East Greenland intrabasaltics are more or less contemporaneous, at about the Paleocene/Eocene boundary. However, the comparable pollen and spore assemblage in the Hebridean province, at Mull and Antrim, is from pyroclastics that may be a little older.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The titanomagnetite oxidation state of "zero age" ocean floor basalts was investigated. For this purpose the oxidation parameter, z, of Hole 648B basalts was determined by SEM observation of "shrinkage cracks" in individual titanomagnetite grains and by Curie temperature measurements. A mean z-value of 0.1 has been deduced for the Hole 648B basalts. Assuming a linear relationship between titanomagnetite low-temperature oxidation state and age of the oceanic basalt, an age of 0.7 m.y. is deduced for Hole 648B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oceanic zircon trace element and Hf-isotope geochemistry offers a means to assess the magmatic evolution of a dying spreading ridge and provides an independent evaluation of the reliability of oceanic zircon as an indicator of mantle melting conditions. The Macquarie Island ophiolite in the Southern Ocean provides a unique testing ground for this approach due to its formation within a mid-ocean ridge that gradually changed into a transform plate boundary. Detrital zircon recovered from the island records this change through a progressive enrichment in incompatible trace elements. Oligocene age (33-27 Ma) paleo-detrital zircon in ophiolitic sandstones and breccias interbedded with pillow basalt have trace element compositions akin to a MORB crustal source, whereas Late Miocene age (8.5 Ma) modern-detrital zircon collected from gabbroic colluvium on the island have highly enriched compositions unlike typical oceanic zircon. This compositional disparity between age populations is not complimented by analytically equivalent eHf data that primarily ranges from 14 to 13 for sandstone and modern-detrital populations. A wider compositional range for the sandstone population reflects a multiple pluton source provenance and is augmented by a single cobble clast with eHf equivalent to the maximum observed composition in the sandstone (~17). Similar sandstone and colluvium Hf-isotope signatures indicate inheritance from a similar mantle reservoir that was enriched from the depleted MORB mantle average. The continuity in Hf-isotope signature relative to trace element enrichment in Macquarie Island zircon populations, suggests the latter formed by reduced partial melting linked to spreading-segment shortening and transform lengthening along the dying spreading ridge.