963 resultados para Alkenone, d13C
Resumo:
Based on models and proxy data it has been proposed that salinity-driven stratification weakened in the subarctic North Pacific during the last deglaciation, which potentially contributed to the deglacial rise in atmospheric carbon dioxide. We present high-resolution subsurface temperature (TMg/Ca) and subsurface salinity-approximating (d18Oivc-sw) records across the last 20,000 years from the subarctic North Pacific and its marginal seas, derived from combined stable oxygen isotopes and Mg/Ca ratios of the planktonic foraminiferal species Neogloboquadrina pachyderma (sin.). Our results indicate regionally differing changes of subsurface conditions. During the Heinrich Stadial 1 and the Younger Dryas cold phases our sites were subject to reduced thermal stratification, brine rejection due to sea-ice formation, and increased advection of low-salinity water from the Alaskan Stream. In contrast, the Bølling-Allerød warm phase was characterized by strengthened thermal stratification, stronger sea-ice melting, and influence of surface waters that were less diluted by the Alaskan Stream. From direct comparison with alkenone-based sea surface temperature estimates (SSTUk'37), we suggest deglacial thermocline changes that were closely related to changes in seasonal contrasts and stratification of the mixed layer. The modern upper-ocean conditions seem to have developed only since the early Holocene.
Resumo:
We determined alkenone concentrations (µg/g dry sediment) and unsaturation indices (Uk'37) on 280 samples from Ocean Drilling Program Hole 1002C over the last full glacial cycle (marine oxygen isotope Stages [MIS] 1-6). Alkenone concentrations vary dramatically in relation to glacial-interglacial cycles, with high concentrations typical of interglacial stages, high sea level, inferred high surface productivity, and bottom-water anoxia. Our reconstruction of low productivity during the last glacial maximum is consistent with previous reports of a sharp decline in the foraminiferal species Neogloboquadrina dutertrei, an upwelling index. Alkenone paleotemperatures show little cooling at both the last glacial maximum and MIS 6. Variations of as much as 4°C occurred during the earlier part of MIS 3 and MIS 4 as well as the latter part of MIS 5. The absence of cooling during glacial maxima determined from alkenone paleothermometry is consistent with faunal reconstructions for the western Caribbean but requires that much of the oxygen isotopic record of the planktonic foraminifer Globigerinoides ruber be influenced by salinity variations rather than temperature.